首页> 外文期刊>Journal of the American Chemical Society >Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage
【24h】

Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage

机译:二维介孔碳纳米片及其衍生的石墨烯纳米片:合成和高效锂离子存储

获取原文
获取原文并翻译 | 示例
       

摘要

We report a new solution deposition method to synthesize an unprecedented type of two-dimensional ordered mesoporous carbon nanosheets via a controlled low-concentration monomicelle dose-packing assembly approach. These obtained carbon nanosheets possess only one layer of ordered mesopores on the surface of a substrate, typically the inner walls of anodic aluminum oxide pore channels, and can be further converted into mesoporous graphene nanosheets by carbonization. The atomically flat graphene layers with mesopores provide high surface area for lithium ion adsorption and intercalation, while the ordered mesopores perpendicular to the graphene layer enable efficient ion transport as well as volume expansion flexibility, thus representing a unique orthogonal architecture for excellent lithium ion storage capacity and cycling performance. Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity of 1040 mAh/g at 100 mA/g, and they can retain at 833 mAh/g even after numerous cycles at varied current densities. Even at a large current density of 5 A/g, the reversible capacity is retained around 255 mAh/g, larger than for most other porous carbon-based anodes previously reported, suggesting a remarkably promising candidate for energy storage.
机译:我们报告了一种新的溶液沉积方法,该方法通过可控的低浓度单胶束剂量组装方法来合成前所未有的二维有序介孔碳纳米片。这些获得的碳纳米片在基底的表面上通常仅具有阳极氧化铝孔通道的内壁,仅具有一层有序中孔,并且可以通过碳化进一步转化为介孔石墨烯纳米片。具有介孔的原子平面石墨烯层为锂离子的吸附和嵌入提供了较大的表面积,而垂直于石墨烯层的有序介孔可实现有效的离子传输以及体积膨胀灵活性,因此代表了独特的正交结构,具有出色的锂离子存储能力和骑行表现。由中孔石墨烯纳米片制成的锂离子电池阳极在100 mA / g时表现出1040 mAh / g的出色可逆容量,即使在经过不同电流密度的多次循环后也可以保持在833 mAh / g。即使在5 A / g的大电流密度下,可逆容量仍保持在255 mAh / g左右,比之前报道的大多数其他多孔碳基阳极更大,这表明它是极有希望的储能材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第4期|1524-1530|共7页
  • 作者单位

    Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China;

    Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China;

    Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China;

    Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China;

    Department of Chemical and Biomolecular Engineering, University of Melbourne, Australia;

    Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China;

    Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China;

    Department of Chemical and Biomolecular Engineering, University of Melbourne, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:12:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号