首页> 外文期刊>Journal of the American Chemical Society >TEMPO: A Mobile Catalyst for Rechargeable Li-O_2 Batteries
【24h】

TEMPO: A Mobile Catalyst for Rechargeable Li-O_2 Batteries

机译:TEMPO:可移动式Li-O_2电池催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

Nonaqueous Li-O_2 batteries are an intensively studied future energy storage technology because of their high theoretical energy density. However, a number of barriers prevent a practical application, and one of the major challenges is the reduction of the high charge overpotential: Whereas lithium peroxide (Li_2O_2) is formed during discharge at around 2.7 V (vs Li~+/Li), its electrochemical decomposition during the charge process requires potentials up to 4.5 V. This high potential gap leads to a low round-trip efficiency of the cell, and more importantly, the high charge potential causes electrochemical decomposition of other cell constituents. Dissolved oxidation catalysts can act as mobile redox mediators (RM), which enable the oxidation of Li_2O_2 particles even without a direct electric contact to the positive electrode. Herein we show that the addition of 10 mM TEMPO (2,2,6,6- tetramethylpiperidinyloxyl), homogeneously dissolved in the electrolyte, provides a distinct reduction of the charging potentials by 500 mV. Moreover, TEMPO enables a significant enhancement of the cycling stability leading to a doubling of the cycle life. The efficiency of the TEMPO mediated catalysis was further investigated by a parallel monitoring of the cell pressure, which excludes a considerable contribution of a parasitic shuttle (i.e., internal ionic short circuit) to the anode during cycling. We prove the suitability of TEMPO by a systematic study of the relevant physical and chemical properties, i.e., its (electro)chemical stability, redox potential, diffusion coefficient and the influence on the oxygen solubility. Furthermore, the charging mechanisms of Li-O_2 cells with and without TEMPO were compared by combining different electrochemical and analytical techniques.
机译:非水Li-O_2电池由于其较高的理论能量密度而被广泛研究,是未来的储能技术。然而,许多障碍阻碍了实际应用,主要挑战之一是降低高电荷超电势:尽管过氧化锂(Li_2O_2)是在2.7 V(vs Li〜+ / Li)放电时形成的,充电过程中的电化学分解需要高达4.5 V的电势。此高电势间隙导致电池的往返效率低,更重要的是,高充电电势会导致其他电池成分的电化学分解。溶解的氧化催化剂可以充当移动氧化还原介体(RM),即使没有与正电极直接电接触,也可以氧化Li_2O_2颗粒。本文中,我们显示出均匀溶解在电解质中的10 mM TEMPO(2,2,6,6-四甲基哌啶基氧基)的加入使充电电位显着降低了500 mV。而且,TEMPO可以显着提高循环稳定性,从而使循环寿命延长一倍。通过并行监测电池压力进一步研究了TEMPO介导的催化效率,该监测排除了循环过程中对阳极的寄生梭(即内部离子短路)的巨大影响。我们通过对相关物理和化学性质的系统研究来证明TEMPO的适用性,即其(电化学)化学稳定性,氧化还原电势,扩散系数以及对氧溶解度的影响。此外,通过结合不同的电化学和分析技术,比较了有和没有TEMPO的Li-O_2电池的充电机理。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第42期|15054-15064|共11页
  • 作者单位

    Institute of Physical Chemistry, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany;

    Institute of Physical Chemistry, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany;

    Institute of Physical Chemistry, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany;

    BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany;

    Institute of Physical Chemistry, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号