首页> 外文期刊>Journal of the American Chemical Society >Reversible CO Binding Enables Tunable CO/H_2 and CO/N_2 Separations in Metal-Organic Frameworks with Exposed Divalent Metal Cations
【24h】

Reversible CO Binding Enables Tunable CO/H_2 and CO/N_2 Separations in Metal-Organic Frameworks with Exposed Divalent Metal Cations

机译:可逆的CO结合可实现暴露于二价金属阳离子的金属有机骨架中可调谐的CO / H_2和CO / N_2分离

获取原文
获取原文并翻译 | 示例
       

摘要

Six metal-organic frameworks of the M_2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc~(4-) = 2,5-dioxido-1,4-benzenedicarbox-ylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.09(2) A for M = Ni to 2.49(1) A for M = Zn and M-C-O angles ranging from 161.2(7)° for M = Mg to 176.9(6)° for M = Fe. Electronic structure calculations employing density functional theory (DFT) resulted in good agreement with the trends apparent in the infrared spectra and crystal structures. These results represent the first crystallographically characterized magnesium and zinc carbonyl compounds and the first high-spin manganese(Ⅱ), iron(Ⅱ), cobalt(Ⅱ), and nickel(Ⅱ) carbonyl species. Adsorption isotherms indicate reversible adsorption, with capacities for the Fe, Co, and Ni frameworks approaching one CO per metal cation site at 1 bar, corresponding to loadings as high as 6.0 mmol/g and 157 cm~3/cm~3. The six frameworks display (negative) isosteric heats of CO adsorption ranging from 52.7 to 27.2 kJ/mol along the series Ni>Co>Fe>Mg>Mn>Zn, following the Irving-Williams stability order. The reversible CO binding suggests that these frameworks may be of utility for the separation of CO from various industrial gas mixtures, including CO/H_2 and CO/N_2. Selectivities determined from gas adsorption isotherm data using ideal adsorbed solution theory (IAST) over a range of gas compositions at 1 bar and 298 K indicate that all six M_2(dobdc) frameworks could potentially be used as solid adsorbents to replace current cryogenic distillation technologies, with the choice of M dictating adsorbent regeneration energy and the level of purity of the resulting gases.
机译:M_2(dobdc)(M = Mg,Mn,Fe,Co,Ni,Zn; dobdc〜(4-)= 2,5-dioxido-1,4-benzenedicarbox-ylate)结构类型的六个金属有机骨架为证明可以高容量可逆地结合一氧化碳。红外光谱表明,在CO与这些骨架内的孔衬里的二价金属阳离子配位后,C-O拉伸频率发生蓝移,这与非经典金属-CO相互作用一致。结构确定表明M-CO距离范围从M = Ni的2.09(2)A到2.49(1)M的Zn的M-CO距离和MCO的角度从M = Mg的161.2(7)°到M的176.9(6)° =铁使用密度泛函理论(DFT)进行的电子结构计算与红外光谱和晶体结构中的趋势明显吻合。这些结果代表了第一个晶体学上表征的羰基镁和锌化合物,以及第一个高自旋锰(Ⅱ),铁(Ⅱ),钴(Ⅱ)和镍(Ⅱ)羰基物质。吸附等温线表明吸附是可逆的,Fe,Co和Ni骨架的容量在1 bar下接近每个金属阳离子1个CO,对应的负载量高达6.0 mmol / g和157 cm〜3 / cm〜3。沿着欧文-威廉姆斯稳定性顺序,沿着Ni> Co> Fe> Mg> Mn> Zn系列,这六个骨架显示出(负)等温吸附CO的等排热范围为52.7至27.2 kJ / mol。可逆的CO结合表明这些框架可能适用于从各种工业气体混合物(包括CO / H_2和CO / N_2)中分离出CO。使用理想吸附溶液理论(IAST)根据气体吸附等温线数据在1 bar和298 K范围内的气体组成范围内确定的选择性表明,所有六个M_2(dobdc)骨架都可以用作固体吸附剂,以替代当前的低温蒸馏技术,选择M决定吸附剂的再生能量和所得气体的纯度。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第30期|10752-10761|共10页
  • 作者单位

    Department of Chemistry, University of California, Berkeley, California 94720, United States;

    Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States;

    Department of Chemistry, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, NIS and INSTM Centre of Reference, University of Turin, Via Quarello 15, I-10135 Torino, Italy;

    Department of Chemistry, NIS and INSTM Centre of Reference, University of Turin, Via Quarello 15, I-10135 Torino, Italy;

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States;

    Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Department of Chemistry, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, University of California, Berkeley, California 94720, United States;

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States;

    Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States;

    Department of Chemistry, University of California, Berkeley, California 94720, United States,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States;

    Department of Chemistry, NIS and INSTM Centre of Reference, University of Turin, Via Quarello 15, I-10135 Torino, Italy;

    Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States,Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States;

    Department of Chemistry, University of California, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号