首页> 外文期刊>Journal of the American Chemical Society >Calcium Inhibition of Ribonuclease H1 Two-Metal Ion Catalysis
【24h】

Calcium Inhibition of Ribonuclease H1 Two-Metal Ion Catalysis

机译:核糖核酸酶H1两金属离子催化的钙抑制作用

获取原文
获取原文并翻译 | 示例
       

摘要

Most phosphate-processing enzymes require Mg~(~(2+)) as a cofactor to catalyze nucleotide cleavage and transfer reactions. Ca~(2+) ions inhibit many of these enzymatic activities, despite Ca~(2+) and Mg~(2+) having comparable binding affinities and overall biological abundances. Here we study the molecular details of the calcium inhibition mechanism for phosphodiester cleavage, an essential reaction in the metabolism of nucleic acids and nucleotides, by comparing Ca~(2+)- and Mg~(2+) catalyzed reactions. We study the functional roles of the specific metal ion sites A and B in enabling the catalytic cleavage of an RNA/DNA hybrid substrate by B. halodurans ribonuclease (RNase) H1 using hybrid quantum-mechanics/molecular mechanics (QM/MM) free energy calculations. We find that Ca~(2+) substitution of either of the two active-site Mg~(2+) ions substantially increases the height of the reaction barrier and thereby abolishes the catalytic activity. Remarkably, Ca~(2+) at the A site is inactive also in Mg~(2+)-optimized active-site structures along the reaction path, whereas Mg~(2+) substitution recovers activity in Ca~(2+)-optimized structures. Geometric changes resulting from Ca~(2+) substitution at metal ion site A may thus be a secondary factor in the loss of catalytic activity. By contrast, at metal ion site B geometry plays a more important role, with only a partial recovery of activity after Mg~(2+) substitution in Ca~(2+)-optimized structures. Ca~(2+)-substitution also leads to a change in mechanism, with deprotonation of the water nucleophile requiring a closer approach to the scissile phosphate, which in turn increases the barrier. As a result, Ca~(2+) is less efficient in activating- the water. As a likely cause for the different reactivities of Mg~(2+) and Ca~(2+) ions in site A, we identify differences in charge transfer to the ions and the associated decrease in the pK_a of the oxygen nucleophile attacking the phosphate group.
机译:大多数磷酸盐处理酶都需要Mg〜(〜(2+))作为辅助因子来催化核苷酸裂解和转移反应。尽管Ca〜(2+)和Mg〜(2+)具有相当的结合亲和力和总体生物丰度,但Ca〜(2+)离子抑制了许多这些酶的活性。在这里,我们通过比较Ca〜(2 +)-和Mg〜(2+)催化的反应,研究了磷酸二酯裂解的钙抑制机制的分子细节,这是核酸和核苷酸代谢中的重要反应。我们研究了特定的金属离子位点A和B的功能,通过使用混合量子力学/分子力学(QM / MM)自由能,能够通过B. halodurans核糖核酸酶(RNase)H1催化裂解RNA / DNA杂交底物计算。我们发现两个活性位Mg〜(2+)离子中任何一个的Ca〜(2+)取代都大大增加了反应势垒的高度,从而废除了催化活性。值得注意的是,在A位的Ca〜(2+)在沿着反应路径的Mg〜(2+)优化的活性位结构中也没有活性,而Mg〜(2+)的取代恢复了Ca〜(2+)的活性-优化的结构。因此,在金属离子位点A处由Ca〜(2+)取代引起的几何变化可能是催化活性丧失的第二个因素。相比之下,在金属离子位点B的几何形状起着更重要的作用,在Ca〜(2+)优化的结构中,Mg〜(2+)取代后,活性仅部分恢复。 Ca〜(2 +)-取代也导致机理的改变,水亲核试剂的去质子化需要更接近易裂磷酸盐,这反过来又增加了屏障。结果,Ca〜(2+)活化水的效率较低。作为位点A中Mg〜(2+)和Ca〜(2+)离子不同反应性的可能原因,我们确定了电荷转移到离子上的差异以及氧亲核试剂攻击磷酸盐的pK_a的相关降低。组。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第8期|3137-3144|共8页
  • 作者单位

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892-0520, United States,Department of Chemistry, King's College London, London SE1 1DB, United Kingdom;

    Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892, United States;

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,Bethesda, Maryland 20892-0520, United States,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号