首页> 外文期刊>Journal of the American Chemical Society >Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries
【24h】

Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries

机译:用于非水氧化还原液流电池的低分子量有机阳极材料的进化设计

获取原文
获取原文并翻译 | 示例
       

摘要

The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e~-) or less), and must function with low molecular weight supporting electrolytes such as LiBF_4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpvridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol· e~-), and undergoes two reversible le~ reductions in the presence of LiBF_4 to form reduced products that are stable over days in solution.
机译:将可再生能源整合到电网中需要低成本的能量存储系统,该系统可调节与大多数可再生能源相关的可变和间歇性能量通量。非水氧化还原液流电池已经成为网格规模储能应用中的一项有前途的技术。因为系统的成本与质量成比例,所以电活性材料必须具有较低的当量重量(理想的是150 g /(mol·e〜-)或更小),并且必须与低分子量的支持电解质(如LiBF_4)一起使用。然而,在锂离子载体存在下经历可逆氧化还原过程的可溶性阳极电解液材料很少见。我们报告了一系列基于吡啶的阳极电解液材料的进化设计,这些材料在存在锂离子支持电解质的情况下,在低电势下最多可显示两个可逆氧化还原对。进行了阳极电解液候选物的循环伏安法及其相应带电状态的独立合成的组合,以快速筛选最有希望的候选物。该工作流程的结果为第一代材料可能的分解途径提供了证据,并为在目标条件下改善阳极电解液材料的稳定性提供了指导性的合成修饰方法。该迭代过程导致鉴定出有希望的阳极电解液材料,即N-甲基4-乙酰基v鎓四氟硼酸盐。该化合物可溶于非水溶剂,可在单个合成步骤中制得,当量重量低至111 g /(mol·e--),在LiBF_4存在下经历两次可逆的还原反应,形成还原产物,在溶液中几天内稳定。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第45期|14465-14472|共8页
  • 作者单位

    Joint Center for Energy Storage Research, Argonne, Illinois 60439, United States ,Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States;

    Joint Center for Energy Storage Research, Argonne, Illinois 60439, United States ,Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States;

    Joint Center for Energy Storage Research, Argonne, Illinois 60439, United States ,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States;

    Joint Center for Energy Storage Research, Argonne, Illinois 60439, United States ,Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States;

    Joint Center for Energy Storage Research, Argonne, Illinois 60439, United States ,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States ,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States;

    Joint Center for Energy Storage Research, Argonne, Illinois 60439, United States ,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States;

    Joint Center for Energy Storage Research, Argonne, Illinois 60439, United States ,Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:09:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号