首页> 外文期刊>Journal of the American Chemical Society >D_(2d)(23)-C_(84) versus Sc_2C_2@D_(2d)(23)-C_(84): Impact of Endohedral Sc_2C_2 Doping on Chemical Reactivity in the Photolysis of Diazirine
【24h】

D_(2d)(23)-C_(84) versus Sc_2C_2@D_(2d)(23)-C_(84): Impact of Endohedral Sc_2C_2 Doping on Chemical Reactivity in the Photolysis of Diazirine

机译:D_(2d)(23)-C_(84)与Sc_2C_2 @ D_(2d)(23)-C_(84):内表面Sc_2C_2掺杂对重氮在光解中化学反应性的影响

获取原文
获取原文并翻译 | 示例
       

摘要

We compared the chemical reactivity of D_(2d)(23)-C_(84) and that of Sc_2C_2@D_(2d)(23)-C_(84), both having the same carbon cage geometry, in the photolysis of 2-adamantane-2,3'-[3H]-diazirine, to clarify metal-atom doping effects on the chemical reactivity of the carbon cage. Experimental and computational studies have revealed that the chemical reactivity of the D_(2d)(23)-C_(84) carbon cage is altered drastically by endohedral Sc_2C_2 doping. The reaction of empty D_(2d)(23)-C_(84) with the diazirine under photoirradiation yields two adamantylidene (Ad) adducts. NMR spectroscopic studies revealed that the major Ad monoadduct (C_(84)(Ad)-A) has a fulleroid structure and that the minor Ad monoadduct (C_(84)(Ad)-B) has a methanofuller- ene structure. The latter was also characterized using X-ray crystallography. C_(84)(Ad)-A is stable under photoirradiation, but it interconverted to C_(84)(Ad)-B by heating at 80 ℃. In contrast, the reaction of endohedral Sc_2C_2@D_(2d)(23)-C_(84) with diazirine under photoirradiation affords four Ad monoadducts (Sc_2C_2@ C_(84)(Ad)-A, Sc_2C_2@C_(84)(Ad)-B, Sc_2C_2@C_(84)(Ad)-C, and Sc_2C_2@C_(84)(Ad)-D). The structure of Sc_2C_2@C_(84)(Ad)-C was characterized using X-ray crystallography. Thermal interconversion of Sc_2C_2@C_(84)(Ad)-A and Sc_2C_2@C_(84)(Ad)-B to Sc_2C_2@ C_(84)(Ad)-C was also observed. The reaction mechanisms of the Ad addition and thermal interconversion were elucidated from theoretical calculations. Calculation results suggest that C_(84)(Ad)-B and Sc_2C_2@C_(84)(Ad)-C are thermodynamicaUy favorable products. Their different chemical reactivities derive from Sc_2C_2 doping, which raises the HOMO and LUMO levels of the D_(2d)(23)-C_(84) carbon cage.
机译:我们比较了D_(2d)(23)-C_(84)和Sc_2C_2 @ D_(2d)(23)-C_(84)的化学反应性,它们在2-的光解中具有相同的碳笼几何形状金刚烷-2,3'-[3H]-二嗪啉,以阐明金属原子掺杂对碳笼化学反应性的影响。实验和计算研究表明,D_(2d)(23)-C_(84)碳笼的化学反应性通过内向Sc_2C_2掺杂而急剧变化。空D_(2d)(23)-C_(84)与重氮在光辐射下的反应产生两个金刚烷(Ad)加合物。 NMR光谱研究表明,主要的Ad单加合物(C_(84)(Ad)-A)具有富勒烯结构,次要的Ad单加合物(C_(84)(Ad)-B)具有亚甲基富勒烯结构。后者也使用X射线晶体学表征。 C_(84)(Ad)-A在光辐照下是稳定的,但在80℃加热时可互转换为C_(84)(Ad)-B。相反,在光辐射下,内膜Sc_2C_2 @ D_(2d)(23)-C_(84)与二嗪胺的反应提供了四个Ad单加合物(Sc_2C_2 @ C_(84)(Ad)-A,Sc_2C_2 @ C_(84)(Ad )-B,Sc_2C_2 @ C_(84)(Ad)-C和Sc_2C_2 @ C_(84)(Ad)-D)。利用X射线晶体学对Sc_2C_2 @ C_(84)(Ad)-C的结构进行了表征。还观察到Sc_2C_2 @ C_(84)(Ad)-A和Sc_2C_2 @ C_(84)(Ad)-B热交换为Sc_2C_2 @ C_(84)(Ad)-C。从理论计算中阐明了Ad添加和热互变的反应机理。计算结果表明,C_(84)(Ad)-B和Sc_2C_2 @ C_(84)(Ad)-C是热力学上有利的产物。它们不同的化学反应性源自Sc_2C_2掺杂,从而提高了D_(2d)(23)-C_(84)碳笼的HOMO和LUMO水平。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第50期|16523-16532|共10页
  • 作者单位

    Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan;

    Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan;

    Institute for Chemical Physics & Department of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan;

    Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan;

    Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan;

    Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan;

    Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan,Department of Chemistry, Faculty of Science, Josai University, Saitama 350-0295, Japan;

    Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan;

    Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan;

    Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan;

    Institute for Chemical Physics & Department of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;

    Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan,Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China;

    Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan;

    Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan,Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan,Foundation for Advancement of International Science, Ibaraki 305-0821, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:59

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号