首页> 外文期刊>Journal of the American Chemical Society >Electrocatalytic Activity of Individual Pt Nanoparticles Studied by Nanoscale Scanning Electrochemical Microscopy
【24h】

Electrocatalytic Activity of Individual Pt Nanoparticles Studied by Nanoscale Scanning Electrochemical Microscopy

机译:纳米扫描电化学显微镜研究单个Pt纳米粒子的电催化活性

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding the relationship between the structure and the reactivity of catalytic metal nanoparticles (NPs) is important to achieve higher efficiencies in electro-catalytic devices. A big challenge remains, however, in studying these relations at the individual NP level. To address this challenge, we developed an approach using nanometer-scale scanning electrochemical microscopy (SECM) for the study of the geometric property and catalytic activity of individual Pt NPs in the hydrogen oxidation reaction (HOR). Herein, Pt NPs with a few tens to a hundred nm radius were directly electrodeposited on a highly oriented pyrolitic graphite (HOPG) surface via nucleation and growth without the necessity of capping agents or anchoring molecules. A well-defined nanometer-sized tip comparable to the dimensions of the NPs and a stable nanogap between the tip and NPs enabled us to achieve lateral and vertical spatial resolutions at a nanometer-scale and study fast electron-transfer kinetics. Specifically, the use of two different types of redox mediators: (1) outer-sphere mediator and (2) inner-sphere mediators could differentiate between the topography and the catalytic activity of individual Pt NPs and measure a large effective rate constant of HOR, k_(eff)~0 of ≥2 cm/s as a lower limit at each Pt NP. Consequently, the size, shape, spatial orientation and the catalytic activity of Pt NPs could be determined at an individual level in nanoscale SECM where imaging accompanied by theoretical modeling and analysis. This approach can be easily extended to quantitatively probe the effects of the surface property, such as capping agent effects on the catalytic activity of a variety of metal NPs for the design and assessment of NP catalysts.
机译:了解催化金属纳米颗粒(NPs)的结构与反应性之间的关系对于在电催化设备中实现更高的效率非常重要。然而,在单个NP级别研究这些关系仍然是一个巨大的挑战。为了解决这一挑战,我们开发了一种使用纳米级扫描电化学显微镜(SECM)的方法来研究氢氧化反应(HOR)中各个Pt NP的几何性质和催化活性。在此,半径为几十到一百纳米的Pt NPs通过成核和生长直接电沉积在高度定向的热解石墨(HOPG)表面上,而无需封端剂或锚定分子。一个与NP尺寸可比的定义明确的纳米尺寸尖端,以及该尖端与NP之间的稳定纳米间隙,使我们能够获得纳米级的横向和垂直空间分辨率,并研究快速的电子传输动力学。具体来说,使用两种不同类型的氧化还原介体:(1)外球体介体和(2)内球体介体可以区分单个Pt NP的形貌和催化活性,并测量HOR的较大有效速率常数,作为每个Pt NP的下限,k_(eff)〜0≥2cm / s。因此,可以在纳米级SECM的单个水平上确定Pt NP的大小,形状,空间取向和催化活性,并在成像过程中进行理论建模和分析。可以轻松地扩展此方法,以定量探测表面性质的影响,例如封端剂对各种金属NP催化活性的影响,以用于NP催化剂的设计和评估。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第27期|8560-8568|共9页
  • 作者单位

    Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States;

    Laboraoire de Physique de la Matiere Condensee, Ecole Polytechnique, 91128 Palaiseau, France;

    Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States;

    Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93111, United States;

    Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66047, United States;

    Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号