首页> 外文期刊>Journal of the American Chemical Society >Biosynthesis and Reactivity of Cysteine Persulfides in Signaling
【24h】

Biosynthesis and Reactivity of Cysteine Persulfides in Signaling

机译:半胱氨酸过硫化物的生物合成和反应性在信号传导中

获取原文
获取原文并翻译 | 示例
       

摘要

Hydrogen sulfide (H_2S) elicits pleiotropic physiological effects ranging from modulation of cardiovascular to CNS functions. A dominant method for transmission of sulfide-based signals is via posttranslational modification of reactive cysteine thiols to persulfides. However, the source of the persulfide donor and whether its relationship to H_2S is as a product or precursor is controversial The transsulfuration pathway enzymes can synthesize cysteine persulfide (Cys- SSH) from cystine and H_2S from cysteine and/or homocysteine. Recently, Cys- SSH was proposed as the primary product of the transsulfuration pathway with H_2S representing a decomposition product of Cys-SSH. Our detailed kinetic analyses demonstrate a robust capacity for Cys-SSH production by the human transsulfuration pathway enzymes, cystathionine beta-synthase and γ-cystathionase (CSE) and for homocysteine persulfide synthesis from homocystine by CSE only. However, in the reducing cytoplasmic milieu where the concentration of reduced thiols is significantly higher than of disulfides, substrate level regulation favors the synthesis of H_2S over persulfides. Mathematical modeling at physiologically relevant hepatic substrate concentrations predicts that H_2S rather than Cys-SSH is the primary product of the transsulfuration enzymes with CSE being the dominant producer. The half-life of the metastable Cys-SSH product is short and decomposition leads to a mixture of polysulfides (Cys-S-(S)_n-S-Cys). These in vitro data, together with the intrinsic reactivity of Cys-SSH for cysteinyl versus sulfur transfer, are consistent with the absence of an observable increase in protein persulfidation in cells in response to exogenous cystine and evidence for the formation of polysulfides under these conditions.
机译:硫化氢(H_2S)引起多效性生理作用,其范围从调节心血管到中枢神经系统功能。传输基于硫化物的信号的主要方法是将反应性半胱氨酸硫醇翻译后修饰为过硫化物。然而,过硫化物供体的来源以及其与H_2S的关系是作为产物还是前体存在争议。转硫途径酶可以从半胱氨酸合成半胱氨酸过硫化物(Cys-SSH),从半胱氨酸和/或高半胱氨酸合成H_2S。近来,提出了Cys-SSH作为转硫途径的主要产物,其中H_2S代表Cys-SSH的分解产物。我们详细的动力学分析表明,人转硫途径酶,胱硫醚β-合酶和γ-胱硫醚酶(CSE)可以产生Cys-SSH,并且仅CSE可以从同型半胱氨酸合成同型半胱氨酸。然而,在还原的硫醇浓度显着高于二硫化物的胞质还原环境中,底物水平调节比过硫化物更有利于H_2S的合成。在生理相关的肝底物浓度下的数学模型预测,H_2S而非Cys-SSH是转硫酶的主要产物,而CSE是主要的产生者。亚稳态Cys-SSH产物的半衰期短,分解会导致多硫化物(Cys-S-(S)_n-S-Cys)的混合物。这些体外数据,以及Cys-SSH对半胱氨酰与硫转移的内在反应性,与在细胞中不存在可响应于外源胱氨酸的蛋白质过硫化现象的明显增加以及在这些条件下形成多硫化物的证据相一致。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第1期|289-299|共11页
  • 作者单位

    Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States;

    Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow 119991, Russia;

    Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States;

    Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States;

    Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany;

    Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany;

    Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号