...
首页> 外文期刊>Journal of the American Chemical Society >Ultrafast to Ultraslow Dynamics of a Langmuir Monolayer at the Air/Water Interface Observed with Reflection Enhanced 2D IR Spectroscopy
【24h】

Ultrafast to Ultraslow Dynamics of a Langmuir Monolayer at the Air/Water Interface Observed with Reflection Enhanced 2D IR Spectroscopy

机译:反射增强型2D红外光谱仪观察到的空气/水界面处Langmuir单层膜的超快至超慢动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Monolayers play important roles in naturally occurring phenomena and technological processes. Monolayers at the air/water interface have received considerable attention, yet it has proven difficult to measure monolayer and interfacial molecular dynamics. Here we employ a new technique, reflection enhanced two-dimensional infrared (2D IR) spectroscopy, on a carbonyl stretching mode of tricarbonylchloro-9-octadecylamino- 4,5-diazafluorenerhenium(Ⅰ) (TReF18) monolayers at two surface densities. Comparison to experiments on a water-soluble version of the metal carbonyl headgroup shows that water hydrogen bond rearrangement dynamics slow from 1.5 ps in bulk water to 3.1 ps for interfacial water. Longer time scale fluctuations were also observed and attributed to fluctuations of the number of hydrogen bonds formed between water and the three carbonyls of TReF18. At the higher surface density, two types of TReF18 minor structures are observed in addition to the main structure. The reflection method can take usable 2D IR spectra on the monolayer within 8 s, enabling us to track the fluctuating minor structures' appearance and disappearance on a tens of seconds time scale. 2D IR chemical exchange spectroscopy further shows these structures interconvert in 30 ps. Finally, 2D spectral line shape evolution reveals that it takes the monolayers hours to reach macroscopic structural equilibrium.
机译:单层膜在自然现象和技术过程中起着重要作用。空气/水界面处的单分子层已经受到相当大的关注,但是事实证明很难测量单分子层和界面分子动力学。在这里,我们采用了一种新技术,即反射增强二维红外光谱(2D IR),该技术在两个表面密度的三羰基氯-9-十八烷基氨基-4,5-二氮杂氟ener(Ⅰ)(TReF18)单层的羰基拉伸模式下。与水溶性羰基金属头基实验的比较表明,水氢键重排动力学从散装水中的1.5 ps减慢到界面水的3.1 ps。还观察到更长的时间尺度波动,这归因于水与TReF18的三个羰基之间形成的氢键数量的波动。在较高的表面密度下,除主要结构外,还观察到两种类型的TReF18次要结构。反射方法可以在8 s内在单层上获取可用的2D IR光谱,使我们能够在数十秒的时间尺度上跟踪波动的次要结构的外观和消失。二维红外化学交换光谱进一步显示了这些结构在30 ps内相互转换。最后,二维光谱线形演变表明,单分子层需要数小时才能达到宏观结构平衡。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第46期|16518-16527|共10页
  • 作者单位

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

    Department of Chemistry, Stanford University, Stanford, California 94305, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号