首页> 外文期刊>Journal of the American Chemical Society >Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control
【24h】

Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control

机译:具有前所未有的长循环寿命的高负荷硫化电极的修复:空间异质性控制

获取原文
获取原文并翻译 | 示例
           

摘要

Self-healing capability helps biological systems to maintain their survivability and extend their lifespan. Similarly, self-healing is also beneficial to next-generation secondary batteries because high-capacity electrode materials, especially the cathodes such as oxygen or sulfur, suffer from shortened cycle lives resulting from irreversible and unstable phase transfer. Herein, by mimicking a biological self-healing process, fibrinolysis, we introduced an extrinsic healing agent, polysulfide, to enable the stable operation of sulfur microparticle (SMiP) cathodes. An optimized capacity (~3.7 mAh cm~(-2)) with almost no decay after 2000 cycles at a high sulfur loading of 5.6 mg_((S)) cm~(-2) was attained. The inert SMiP is activated by the solubilization effect of polysulfides whereas the unstable phase transfer is mediated by mitigated spatial heterogeneity of polysulfides, which induces uniform nucleation and growth of solid compounds. The comprehensive understanding of the healing process, as well as of the spatial heterogeneity, could further guide the design of novel healing agents (e.g., lithium iodine) toward high-performance rechargeable batteries.
机译:自我修复能力有助于生物系统维持其生存能力并延长其寿命。类似地,自修复对下一代二次电池也是有益的,因为高容量的电极材料,尤其是诸如氧或硫之类的阴极,由于不可逆和不稳定的相转移而导致循环寿命缩短。在这里,通过模仿生物自我修复过程,即纤维蛋白溶解,我们引入了一种外在的修复剂聚硫化物,以使硫微粒(SMiP)阴极能够稳定运行。在5.6 mg _((S))cm〜(-2)的高硫负荷下,经过2000次循环后,几乎没有衰减的最佳容量(〜3.7 mAh cm〜(-2))得到了实现。惰性SMiP由多硫化物的增溶作用激活,而不稳定的相转移则由多硫化物的空间异质性减轻而介导,这引起了固体化合物的均匀成核和生长。对愈合过程以及空间异质性的全面了解可以进一步指导新型愈合剂(例如碘化锂)的设计向高性能可充电电池的方向发展。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第25期|8458-8466|共9页
  • 作者单位

    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;

    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;

    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;

    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;

    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;

    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;

    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;

    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号