首页> 外文期刊>Journal of the American Chemical Society >Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons
【24h】

Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons

机译:边缘工程在石墨烯纳米带光电导中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

The effect of edge engineering of graphene nanoribbons (GNRs) on their ultrafast photoconductivity is investigated. Three different GNRs were fabricated by bottom-up synthesis in the liquid phase, where structure, width, and edge planarity could be controlled chemically at the atomic level. The charge carrier transport in the fabricated GNRs was studied on the ultrafast, sub-picosecond time scale using time-resolved terahertz spectroscopy, giving access to the elementary parameters of carrier conduction. While the variation of the side chains does not alter the photoconductive properties of GNRs, the edge structure has a strong impact on the carrier mobility in GNRs by affecting the carrier momentum scattering rate. Calculations of the ribbon electronic structure and theoretical transport studies show that phonon scattering plays a significant role in microscopic conduction in GNRs with different edge structures. A comparison between theory and experiment indicates that the mean free path of charge carriers in the nanoribbons amounts to typically ~20 nm.
机译:研究了石墨烯纳米带(GNR)的边缘工程对其超快光电导性的影响。在液相中通过自下而上的合成方法制备了三种不同的GNR,其中可以在原子水平上化学控制结构,宽度和边缘平面性。使用时间分辨太赫兹光谱,在亚皮秒级的超快时间尺度上研究了制造的GNR中的电荷载流子传输,可访问载流子传导的基本参数。尽管侧链的变化不会改变GNRs的光电导特性,但其边缘结构却通过影响载流子动量散射速率而对GNRs中的载流子迁移率产生了强烈影响。带状电子结构的计算和理论输运研究表明,声子散射在具有不同边缘结构的GNR中在微观传导中起着重要作用。理论与实验之间的比较表明,纳米带中载流子的平均自由程通常约为20 nm。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第23期|7982-7988|共7页
  • 作者单位

    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;

    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;

    Laboratory for Chemistry of Novel Materials, University of Mons, Place du Pare 20, B-7000 Mons, Belgium,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland;

    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;

    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 7, 55128 Mainz, Germany;

    Laboratory for Chemistry of Novel Materials, University of Mons, Place du Pare 20, B-7000 Mons, Belgium;

    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;

    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;

    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;

    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号