首页> 外文期刊>Journal of the American Chemical Society >Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations
【24h】

Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations

机译:粗粒溶剂蒸发模拟中原子分辨率的大异质结形态

获取原文
获取原文并翻译 | 示例
       

摘要

Control over the morphology of the active layer of bulk heterojunction (BHJ) organic solar cells is paramount to achieve high-efficienqr devices. However, no method currently available can predict morphologies for a novel donor-acceptor blend. An approach which allows reaching relevant length scales, retaining chemical specificity, and mimicking experimental fabrication conditions, and which is suited for high-throughput schemes has been proven challenging to find. Here, we propose a method to generate atom-resolved morphologies of BHJs which confonns to these requirements. Coarse-grain (CG) molecular dynamics simulations are employed to simulate the large-scale morphological organization during solution-processing. The use of CG models which retain chemical specificity translates into a direct path to the rational design of donor and acceptor compounds which differ only slightly in chemical nature. Finally, the direct retrieval of fully atomistic detail is possible through backmapping, opening the way for improved quantum mechanical calculations addressing the charge separation mechanism. The method is illustrated for the poly(3-hexyl-thiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) mixture, and found to predict morphologies in agreement with experimental data. The effect of djying rate, P3HT molecular weight, and thermal annealing are investigated extensively, resulting in trends mimicking experimental findings. The proposed methodology can help reduce the parameter space which has to be explored before obtaining optimal morphologies not only for BHJ solar cells but also for any other solution-processed soft matter device.
机译:控制体异质结(BHJ)有机太阳能电池的有源层的形态对于实现高效器件至关重要。但是,当前没有可用的方法可以预测新型供体-受体混合物的形态。已经证明找到一种方法,该方法可以达到相关的长度范围,保持化学特异性并模仿实验制造条件,并且适合于高通量方案。在这里,我们提出了一种符合这些要求的生成BHJ的原子分辨形态的方法。粗粒(CG)分子动力学模拟用于模拟溶液加工过程中的大规模形态组织。保留化学特异性的CG模型的使用转化为合理设计供体和受体化合物的直接途径,这些化合物在化学性质上仅稍有不同。最后,可以通过反映射直接检索完全原子细节,从而为解决电荷分离机理的改进量子力学计算开辟了道路。举例说明了聚(3-己基噻吩)(P3HT)-苯基-C61-丁酸甲酯(PCBM)混合物的方法,发现该方法可预测与实验数据一致的形态。速率,P3HT分子量和热退火的影响已得到广泛研究,其趋势与实验结果相似。所提出的方法可以帮助减少参数空间,不仅对于BHJ太阳能电池,而且对于任何其他溶液处理的软物质装置,在获得最佳形态之前都必须进行探索。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第10期|3697-3705|共9页
  • 作者单位

    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Ghent Qµantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium;

    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号