首页> 外文期刊>Journal of the American Chemical Society >Mechanistic Insights into Diblock Copolymer Nanoparticle-Crystal Interactions Revealed via in Situ Atomic Force Microscopy
【24h】

Mechanistic Insights into Diblock Copolymer Nanoparticle-Crystal Interactions Revealed via in Situ Atomic Force Microscopy

机译:通过原位原子力显微镜揭示的Diblock共聚物纳米粒子-晶体相互作用的机理见解。

获取原文
获取原文并翻译 | 示例
       

摘要

Recently, it has become clear that a range of nanoparticles can be occluded within single crystals to form nanocomposites. Calcite is a much-studied model, but even in this case we have yet to fully understand the details of the nanoscale interactions at the organic–inorganic interface that lead to occlusion. Here, a series of diblock copolymer nanoparticles with well-defined surface chemistries were visualized interacting with a growing calcite surface using in situ atomic force microscopy. These nanoparticles comprise a poly(benzyl methacrylate) (PBzMA) core-forming block and a non-ionic poly(glycerol monomethacrylate) (Ph-PGMA), a carboxylic acid-tipped poly(glycerol monomethacrylate) (HOOC-PGMA), or an anionic poly(methacrylic acid) (PMAA) stabilizer block. Our results reveal three modes of interaction between the nanoparticles and the calcite surface: (i) attachment followed by detachment, (ii) sticking to and “hovering” over the surface, allowing steps to pass beneath the immobilized nanoparticle, and (iii) incorporation of the nanoparticle by the growing crystals. By analyzing the relative contributions of these three types of interactions as a function of nanoparticle surface chemistry, we show that ∼85% of PMAA_(85)-PBzMA_(100) nanoparticles either “hover” or become incorporated, compared to ∼50% of the HOOC-PGMA_(71)-PBzMA_(100) nanoparticles. To explain this difference, we propose a two-state binding mechanism for the anionic PMAA_(85)-PBzMA_(100) nanoparticles. The “hovering” nanoparticles possess highly extended polyelectrolytic stabilizer chains and such chains must adopt a more “collapsed” conformation prior to successful nanoparticle occlusion. This study provides a conceptual framework for understanding how sterically stabilized nanoparticles interact with growing crystals, and suggests design principles for improving occlusion efficiencies.
机译:近来,已经清楚的是,一定范围内的纳米颗粒可以被封闭在单晶内以形成纳米复合材料。方解石是一个受到广泛研究的模型,但是即使在这种情况下,我们仍未完全理解导致阻塞的有机-无机界面上的纳米级相互作用的细节。在此,使用原位原子力显微镜观察了一系列具有明确的表面化学性质的二嵌段共聚物纳米颗粒与生长的方解石表面的相互作用。这些纳米颗粒包含聚甲基丙烯酸苄酯(PBzMA)核心形成嵌段和非离子型聚甲基丙烯酸单甘油酯(Ph-PGMA),羧酸端基的聚甲基丙烯酸甘油酯(HOOC-PGMA)或阴离子聚(甲基丙烯酸)(PMAA)稳定剂嵌段。我们的研究结果揭示了纳米颗粒与方解石表面之间的三种相互作用方式:(i)附着后脱离,(ii)粘附并“悬浮”在表面上,从而允许步骤从固定的纳米颗粒下方通过,以及(iii)掺入纳米粒子通过晶体的生长。通过分析这三种类型相互作用的相对贡献,作为纳米粒子表面化学的函数,我们发现〜85%的PMAA_(85)-PBzMA_(100)纳米粒子“悬浮”或被掺入,而约50%的纳米粒子HOOC-PGMA_(71)-PBzMA_(100)纳米粒子。为了解释这种差异,我们提出了阴离子PMAA_(85)-PBzMA_(100)纳米粒子的两种状态结合机制。 “盘旋”的纳米颗粒具有高度延伸的聚电解稳定剂链,在成功地将纳米颗粒封闭之前,这种链必须采用更“塌陷”的构象。这项研究为理解空间稳定的纳米粒子如何与生长中的晶体相互作用提供了一个概念框架,并提出了改善闭塞效率的设计原则。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第25期|7936-7945|共10页
  • 作者单位

    Department of Materials Science and Engineering, Cornell University;

    The School of Materials, University of Manchester;

    Department of Chemistry, University of Sheffield;

    Department of Chemistry, University of Sheffield;

    Department of Chemistry, University of Sheffield;

    Department of Materials Science and Engineering, Cornell University,Kavli Institute at Cornell for Nanoscale Science, Cornell University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号