首页> 外文期刊>Journal of the American Chemical Society >Tellurium: Fast Electrical and Atomic Transport along the Weak Interaction Direction
【24h】

Tellurium: Fast Electrical and Atomic Transport along the Weak Interaction Direction

机译:碲:沿弱相互作用方向的快速电和原子传输

获取原文
获取原文并翻译 | 示例
       

摘要

In anisotropic materials, the electrical and atomic transport along the weak interaction direction is usually much slower than that along the chemical bond direction. However, Te, an important semiconductor composed of helical atomic chains, exhibits nearly isotropic electrical transport between intrachain and interchain directions. Using first-principles calculations to study bulk and few-layer Te, we show that this isotropy is related to similar effective masses and potentials for charge carriers along different transport directions, benefiting from the delocalization of the lone-pair electrons. This delocalization also enhances the interchain binding, and thus facilitates diffusion of vacancies and interstitial atoms across the chains, which together with the fast intrachain diffusion enable rapid self-healing of these defects at low temperature. Interestingly, the interstitial atoms diffuse along the chain via a concerted rotation mechanism. Our work reveals the unconventional properties underlying the superior performance of Te while providing insight into the transport in anisotropic materials.
机译:在各向异性材料中,沿着弱相互作用方向的电和原子传输通常比沿着化学键方向的电和原子传输慢得多。但是,Te是由螺旋原子链组成的重要半导体,在链内和链间方向之间表现出几乎各向同性的电传输。使用第一性原理计算来研究块状和几层Te,我们发现该各向同性与相似的有效质量和沿不同传输方向的电荷载流子的电势有关,这得益于孤对电子的离域化。这种离域也增强了链间的结合,因此促进了空位和间隙原子在整个链中的扩散,这与快速的链内扩散一起使得能够在低温下快速自我修复这些缺陷。有趣的是,间隙原子通过协调的旋转机制沿链扩散。我们的工作揭示了Te卓越性能背后的非常规特性,同时提供了对各向异性材料中传输的深入了解。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第2期|550-553|共4页
  • 作者单位

    Materials and Process Simulation Center and The Resnick Sustainability Institute, California Institute of Technology, Pasadena, California 91125, United States,Department of Mechanical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States;

    School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, United States;

    Materials and Process Simulation Center and The Resnick Sustainability Institute, California Institute of Technology, Pasadena, California 91125, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号