...
首页> 外文期刊>Journal of terramechanics >Mechanics of cable shovel-formation interactions in surface mining excavations
【24h】

Mechanics of cable shovel-formation interactions in surface mining excavations

机译:露天采矿中电缆铲与地层相互作用的力学

获取原文
获取原文并翻译 | 示例

摘要

The cable shovel excavator is used for primary production in many surface mining operations. A major problem in excavation is the variability of material diggability, resulting in varying mechanical energy input and stress loading of shovel dipper-and-tooth assembly across the working bench. This variability impacts the shovel dipper and tooth assembly in hard formations. In addition, the geometrical constraints within the working environment impose production limitations resulting in low production efficiency and high operating costs. A potential solution to the above problems is the deployment of an intelligent shovel excavation (ISE) technology, with real-time formation identification, recording and knowledge transmission capabilities. This paper advances the ISE technology by developing dynamic models of the cable shovel using the Newton-Euler techniques. The models include the main factors that influence shovel performance including the effect of both linear and angular motions of dipper handle and dipper. A path trajectory is modeled to demonstrate the dynamic velocity and acceleration profiles. Numerical examples show that the critical performance variables include geometrical and physical properties of the dipper and dipper handle, digging strategies and formation properties. The kinematic results show that the critical phase occurs between 1.5 and 2.0 s of a 3-s excavation cycle with occurrence of maximum kinematic effects. The dynamic results also show a similar trend with maximum dynamic effects between 1.5 and 2.0 s. The results also show that the maximum resistive force occurs at 1.625 s within the excavation cycle. At this point the maximum breakout force of the equipment is reached and any increase in the resistive load will require further fragmentation. The results provide appropriate information for excavation planning and execution. These models form the basis for developing dynamic shovel simulators for the ISE technology.
机译:电缆铲挖掘机在许多露天采矿作业中用于一次生产。开挖中的主要问题是材料可挖掘性的可变性,导致变化的机械能输入以及整个工作台上铲斗和齿组件的应力负荷。这种变化性会影响硬地层中的铲斗和铲齿组件。另外,工作环境中的几何约束强加了生产限制,从而导致低生产效率和高运营成本。解决上述问题的一种潜在解决方案是部署具有实时地层识别,记录和知识传输功能的智能铲挖(ISE)技术。本文通过使用Newton-Euler技术开发电缆铲的动态模型来改进ISE技术。这些模型包括影响铲子性能的主要因素,包括铲斗手柄和铲斗的线性运动和角运动的影响。对路径轨迹进行建模以演示动态速度和加速度曲线。数值算例表明,关键性能变量包括铲斗和铲斗手柄的几何和物理特性,挖掘策略和地层特性。运动学结果表明,关键阶段发生在3秒钟挖掘周期的1.5到2.0 s之间,并产生最大的运动学影响。动态结果也显示出相似的趋势,最大动态影响在1.5到2.0 s之间。结果还表明,在开挖周期内最大阻力出现在1.625 s处。此时,将达到设备的最大挖掘力,电阻负载的任何增加都将需要进一步破碎。结果为挖掘计划和执行提供了适当的信息。这些模型构成了开发用于ISE技术的动态铲模拟器的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号