首页> 外文期刊>Journal of structural geology >Predictive permeability model of extensional faults in crystalline and metamorphic rocks; verification by pre-grouting in two sub-sea tunnels, Norway
【24h】

Predictive permeability model of extensional faults in crystalline and metamorphic rocks; verification by pre-grouting in two sub-sea tunnels, Norway

机译:晶体和变质岩中伸展断层的预测渗透率模型;在挪威的两个海底隧道中通过预灌浆进行验证

获取原文
获取原文并翻译 | 示例
       

摘要

This paper link quantitative fault zone descriptions, qualitative fracture and fault rock properties, and engineering data in the study of the permeability structure of fault zones. Datasets include scan-lines, drill cores and cement pre-grouting from two sub-sea tunnels in gneissic and granitic rocks, from which systematic pre-grouting volumes can be used to analyse the in-site relative permeability both in host rocks and fault zones. Major extensional faults intersected by the tunnels reveal common fault rocks surrounding intensively fractured rock lenses in the core. Fracture frequencies in these lenses can reach 100 fractures/metre (f/m). In the bounding damage zones, networks of fracture sets make up an inner zone of fairly high frequency (20-30 f/m) of fault-parallel, long fractures connected by shorter fractures. An outer zone has lower frequencies (< 20 f/m) and more diverse fracture orientations and lengths. There is a general increase in fracture frequency from the background level of the protolith towards the fault core. Tunnel-scale injection of cement reveals patterns that can be ascribed to the impact of faulting; there is an increase in cement injection in fault zones compared to areas with background fracturing away from faults. In detail, there is an innate division of the rock volume into sub-zones characterized by distinct structural style and permeability, with a background level and three fault related sub-zones (fault core, inner damage zone, and outer damage zone). Injection data shows that the background sub-zone commonly can be injected with less than 0.05 m~3 cement per metre tunnel (commonly not injected), whereas the fault core has permeability characteristics nearly as low as the outer damage zone, represented by 0.1-0.2 m~3 cement per metre tunnel, with occasional peaks towards 0.5 m~3. The maximum of cement injection lies in the inner damage zone, marginal to the fault core, with 0.3-0.7 m~3 cement per metre tunnel, locally exceeding 1 m~3. This gives a relative relationship for cement injection of approximately 1:2:1 between fault core, inner damage zone, and outer damage zone of extensional fault zones in crystalline and metamorphic rocks.
机译:本文将定量断层带描述,定性断裂和断层岩石特性以及工程数据链接起来,以研究断层带的渗透性结构。数据集包括扫描线,钻芯和来自片麻岩和花岗岩岩石中两个海底隧道的水泥预灌浆,可以使用系统的预灌浆量来分析主岩和断层带的现场相对渗透率。隧道相交的主要伸展断层揭示了岩心中强烈破裂的岩石晶状体周围的常见断层岩。这些镜片的断裂频率可以达到100断裂/米(f / m)。在边界破坏带中,裂缝组网络组成了一个断层平行,长裂缝与短裂缝相连的相当高频率(20-30 f / m)的内部区域。外部区域的频率较低(<20 f / m),并且裂缝的方向和长度更多样化。从原生岩的背景水平到断层岩心的断裂频率普遍增加。隧道规模的水泥注入揭示了可归因于断层影响的模式。与背景断裂远离断层的区域相比,断层区域的水泥注入增加了。详细说来,岩体先天划分为具有不同结构样式和渗透性的子区域,具有背景水平和三个与断层有关的子区域(断层核心,内部破坏区域和外部破坏区域)。注入数据表明,本底分区通常每米隧道可以注入少于0.05 m〜3的水泥(通常不注入),而断层岩心的渗透率特性几乎与外部破坏区一样低,以0.1-每米隧道0.2 m〜3水泥,偶有峰值向0.5 m〜3。水泥注入量最大的是在内部破坏区,在断层核心的边缘,每米隧道0.3-0.7 m〜3水泥,局部超过1 m〜3。这给出了在结晶岩和变质岩中断裂岩心,内部断裂带和延伸断裂带的外部损伤带之间大约1:2:1的水泥注入的相对关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号