...
首页> 外文期刊>Journal of structural geology >Fabric development as the key for forming ductile shear zones and enabling plate tectonics
【24h】

Fabric development as the key for forming ductile shear zones and enabling plate tectonics

机译:织物开发是形成韧性剪切区和实现板块构造的关键

获取原文
获取原文并翻译 | 示例
           

摘要

Lithospheric deformation on Earth is localized under both brittle and ductile deformation conditions. As high-temperature ductile rheologies are fundamentally strain-rate hardening, the formation of localized ductile shear zones must involve a structural or Theological change or a change in deformation conditions such as an increase in temperature. In this contribution, I develop a localization potential that quantifies the weakening associated with these changes. The localization potential corresponds to the increase in strain rate resulting from that change under constant stress conditions. I provide analytical expressions for the localization potential associated with a temperature increase, grain size reduction, an increase in water fugacity, melt content, or the abundance of a weak mineral phase. I show that these processes cannot localize deformation from a mantle convection scale (103 km) to a ductile shear zone scale (1 km). To achieve this, is it necessary to invoke a structural transition whereby the weak phase in a rock forms interconnected layers. This process is efficient only if one phase is much weaker than the others or if the weakest phase has a highly non-linear rheology. Micas, melt, and fine-grained aggregates - unless dry rheologies are used — have the necessary characteristics. As none of these phases is expected to be present in the dry lithosphere of Venus, this concept can explain why Venus, unlike the Earth, does not display a global network of plate boundaries. The diffuse plate boundary in the Central Indian Ocean may be as yet non-localized because serpentinization has not reached the ductile levels of the lithosphere.
机译:地球上的岩石圈形变局限在脆性和延性形变条件下。由于高温韧性流变从根本上是应变速率硬化,因此局部韧性韧性剪切区的形成必须涉及结构或神学变化或变形条件的变化,例如温度升高。在这项贡献中,我开发了一种本地化潜力,可以量化与这些变化相关的减弱。局部化电位对应于在恒定应力条件下该变化导致的应变率增加。我提供了与温度升高,晶粒尺寸减小,水逸度增加,熔体含量或弱矿物相含量相关的局部化潜力的解析表达式。我表明这些过程不能将变形从地幔对流尺度(103 km)局限到韧性剪切区尺度(1 km)。为此,需要进行结构转换,从而使岩石中的弱相形成相互连接的层。仅当一个相比其他相弱得多或最弱相具有高度非线性的流变性时,此过程才有效。除非使用干流变学,否则云母,熔体和细粒骨料具有必要的特性。由于预计在金星的干燥岩石圈中不会出现这些相,因此这一概念可以解释为什么金星与地球不同,为什么不显示全球的板块边界网络。由于蛇纹岩化作用尚未达到岩石圈的韧性水平,中印度洋的扩散板块边界可能尚未定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号