首页> 外文期刊>Journal of structural geology >Structures and fabrics in glacial ice: A review
【24h】

Structures and fabrics in glacial ice: A review

机译:冰川冰中的结构和织物:评论

获取原文
获取原文并翻译 | 示例
       

摘要

Glaciers, ice sheets and ice caps represent tectonic systems driven by gravity. Their movement can be studied in real time and the rheological properties and strength of ice determined from laboratory experiments and field measurements. All glacial ice has primary stratification, exhibited by variations in grain size, bubble content and debris content. As it deforms, with deformation dominated by plastic flow and recrystallization, accompanied locally by fracture under tension, a suite of structures develops that reflects the primary fabric of the ice and the anisotropy that develops as a result of cumulative deformation. Initial variations in solid impurity content and strain dependent anisotropy as a result of a crystallographic fabric give rise to effective viscosity increases or decreases compared to isotropic polycrystalline ice of about a factor of ten. Foliation develops from inherited (mostly stratification) or introduced (mostly ice veins or fracture traces) fabric elements and from dynamic recrystallization. It is largely dependent on the accumulated strain, which is highest at the base and near the margins of glaciers, ice sheets and ice streams. Folds develop largely passively due to initial amplification of irregularities in the primary stratification, to variations in flow with time or to inhomogeneous flow associated with shear zones and ductile accommodation around open fractures. Buckle folds and boudinage, mostly on a small scale, occur where viscosity contrast is large, mostly in basal ice. Thrusting and wrench faulting are documented in surging glaciers but theoretically most unlikely and rare or absent elsewhere. Many structures interpreted as faults are not due to shear failure but rather result from shear displacements during opening and closing of tensile fractures. (C) 2015 Elsevier Ltd. All rights reserved.
机译:冰川,冰盖和冰盖代表着由重力驱动的构造系统。可以实时研究它们的运动,并通过实验室实验和现场测量确定冰的流变特性和强度。所有冰川冰都具有主要分层,表现为颗粒大小,气泡含量和碎片含量的变化。随着变形,塑性流动和再结晶占主导地位的变形,以及在张力作用下局部断裂,形成了一套结构,这些结构反映了冰的主要结构以及由于累积变形而形成的各向异性。相较于各向同性多晶冰约十分之一,固体杂质含量的初始变化和由晶体学织物引起的应变相关的各向异性导致有效粘度的增加或降低。从继承的(主要是分层)或引入的(主要是冰脉或断裂痕迹)织物元素以及动态的重结晶中产生叶片。它很大程度上取决于累积的应变,该累积的应变在冰川,冰原和冰流的底部和边缘附近最高。褶皱很大程度上是被动地发展的,这是由于初始分层中不规则性的初始放大,流量随时间的变化或与剪切带相关的不均匀流动以及开放性裂缝周围的韧性适应。在粘度反差较大的地方(主要是在基冰中),会发生带褶皱和褶皱,大部分是小规模的。激流和扳手断裂记录在激流的冰川中,但理论上最不可能发生,在其他地方也很少见或不存在。许多被解释为断层的结构不是由于剪切破坏,而是由于拉伸裂缝打开和闭合过程中的剪切位移引起的。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号