首页> 外文期刊>Journal of structural engineering >Seismic Collapse Risk Assessment and FRP Retrofitting of RC Coupled C-Shaped Core Walls Using the FEMA P695 Methodology
【24h】

Seismic Collapse Risk Assessment and FRP Retrofitting of RC Coupled C-Shaped Core Walls Using the FEMA P695 Methodology

机译:使用FEMA P695方法对RC耦合C形芯墙进行地震倒塌风险评估和FRP改造

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the frequent use of C-shaped reinforced concrete (RC) cores as the primary force-resisting system in multistory buildings, there are still challenges in estimating their inelastic seismic response, especially when they are used as a coupled wall system. Recent studies showed the inadequacy of old code provisions in predicting the seismic shear demands of these systems. This means that many existing RC cores are structurally deficient and need to be retrofitted. One alternative is to retrofit RC shear walls using FRP composite materials to enhance the capacity and ductility of the system. The current paper focuses on two aspects of coupled C-shaped RC core systems: (1) seismic collapse of the system for different torsional sensitivities, and (2) effect of FRP retrofitting on the seismic response of the structure. Modifications are proposed to the wide column model recently proposed by other researchers to accurately capture the inelastic torsional behavior of RC cores, including different modes of failure. Moreover, a simplified spring model is proposed to consider the effect of fiber reinforced polymer (FRP) retrofitting with vertical strips along with X-bracing. The proposed modeling approach is validated against available experimental data. Nonlinear incremental dynamic analysis (IDA) of a typical 12-story RC building structure located in Eastern North America was performed using OpenSEES, following the FEMA P695 methodology. It was shown that, although torsional sensitivity has no significant effect on the interstory drift ratios of the building, it can significantly decrease the collapse margin ratio (CMR). Combined shear/flexural failure was found to be the most common failure mode. Observed results also confirmed that FRP strengthening can be used as an efficient method for enhancing the collapse resistance of RC core wall systems. By using a proper strengthening scheme with FRP material, a more than 60% increase in the CMR can be achieved for the structural system. (C) 2017 American Society of Civil Engineers.
机译:尽管在多层建筑中经常使用C形钢筋混凝土(RC)芯作为主要的抗力系统,但在估计其非弹性地震响应方面仍存在挑战,尤其是在将它们用作耦合墙系统时。最近的研究表明,旧规范的规定不足以预测这些系统的地震剪切需求。这意味着许多现有的RC内核在结构上存在缺陷,需要进行改装。一种选择是使用FRP复合材料翻新RC剪力墙,以增强系统的能力和延展性。目前的论文集中在耦合的C形RC核心系统的两个方面:(1)系统在不同扭转敏感性下的地震倒塌;(2)FRP改型对结构地震响应的影响。有人对其他研究人员最近提出的宽柱模型进行了修改,以准确地捕获RC芯的非弹性扭转行为,包括不同的破坏模式。此外,提出了一种简化的弹簧模型,以考虑对带有垂直条和X支撑的纤维增强聚合物(FRP)进行改造的效果。针对现有的实验数据验证了所提出的建模方法。遵循FEMA P695方法,使用OpenSEES对位于北美东部的典型12层RC建筑结构进行了非线性增量动力分析(IDA)。结果表明,尽管扭转灵敏度对建筑物的层间漂移率没有显着影响,但可以显着降低倒塌裕度比(CMR)。发现剪切/弯曲联合破坏是最常见的破坏模式。观察结果还证实,FRP加固可以用作增强RC核心墙系统抗倒塌能力的有效方法。通过对FRP材料使用适当的加固方案,可以使结构系统的CMR增加60%以上。 (C)2017年美国土木工程师学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号