...
首页> 外文期刊>Journal of Spacecraft Technology >Novel Techniques and Algorithms to Provide Efficient Single Frequency Ionospheric Corrections for Future Satellite Based Navigation Systems
【24h】

Novel Techniques and Algorithms to Provide Efficient Single Frequency Ionospheric Corrections for Future Satellite Based Navigation Systems

机译:为未来的基于卫星的导航系统提供有效的单频电离层校正的新技术和算法

获取原文
获取原文并翻译 | 示例
           

摘要

Signal delay due to ionosphere is the major source of error in any satellite based navigation system. There are two kinds of users of satellite based navigation namely dual frequency users and single frequency users. The dual frequency users make use of the frequency dependent nature of ionospheric delay to eliminate most of the ionospheric error in their line of sight. On the other hand, the single frequency users have to use the corrections broadcasted by the navigation satellites to eliminate the ionospheric error in their line of sight. GPS (Global Positioning System) uses the global ionospheric model developed by Klobuchar for ionospheric error removal using eight ionospheric coefficients which are broadcasted once in a day. Similar model has been adapted to IRNSS (Indian Regional Navigation Satellite System) /NAVIC (NAVigation with Indian Constellation) wherein these eight ionospheric coefficients are estimated by indigenously developed technique using the Indian regional ionospheric data. In this paper, four new techniques and their respective algorithms are designed and developed for providing these ionospheric corrections in an enhanced way (with extra parameters along with the existing eight coefficients) for future satellite based navigation systems and thereby achieving better single frequency position accuracies. This involves estimation and broadcast of existing eight ionospheric coefficients along with extra ionospheric parameters identified. The extra parameters identified for each of the four techniques are, 1) calm time ionospheric delay (A_1) as a single parameter and ionospheric phase (A_3) as a single parameter, 2) A_1 as a set of coefficients and A_3 as a single parameter, 3) A_1 as a single parameter and A3 as a set of coefficients, 4) A_1 as a set of coefficients and A_3 as a set of coefficients. All these newly developed techniques are analysed for several days using IRNSS ionospheric data available from IRNSS Stations located over Indian region. The measure of improvement of the novel techniques over the existing coefficients is about 15-16% (approx) and over the GPS coefficients is about 92-94% (approx).
机译:电离层造成的信号延迟是任何基于卫星的导航系统中误差的主要来源。卫星导航有两种用户,即双频用户和单频用户。双频用户利用电离层延迟的频率相关性来消除视线中的大部分电离层误差。另一方面,单频用户必须使用导航卫星广播的校正来消除视线中的电离层误差。 GPS(全球定位系统)使用Klobuchar开发的全球电离层模型,利用八个电离层系数(每天广播一次)消除电离层误差。已经将类似的模型应用于IRNSS(印度区域导航卫星系统)/ NAVIC(印度星座的NAVigation),其中这八个电离层系数是通过使用印度区域电离层数据的本土开发技术估算的。在本文中,设计和开发了四种新技术及其各自的算法,以便为未来的基于卫星的导航系统以增强的方式(带有额外的参数以及现有的八个系数)提供这些电离层校正,从而实现更好的单频位置精度。这涉及估计和广播现有的八个电离层系数以及确定的额外电离层参数。为这四种技术中的每一种确定的额外参数是:1)稳定时间电离层延迟(A_1)作为单个参数,电离层相位(A_3)作为单个参数; 2)A_1作为一组系数,A_3作为单个参数; 3)A_1作为单个参数,A3作为一组系数,4)A_1作为一组系数,A_3作为一组系数。所有这些新开发的技术都使用印度地区IRNSS站提供的IRNSS电离层数据进行了几天的分析。新技术对现有系数的改进措施约为15-16%(约),而对GPS系数的改进措施约为92-94%(约)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号