...
【24h】

Hypersonic Flow

机译:高超音速流

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses some of the areas in which our understanding of hypersonic flows has progressed in recent years―with special reference to the hypersonic similarity concept and the hypersonic approximations; the interaction between the boundary layer over a slender body and the external inviscid flow; and the flow over blunt bodies, including the heat-transfer problem. When the inviscid pressure distributions predicted by the hypersonic approximations (Newtonian, shock-expansion, tangent-wedge, and cone) are compared with "exact" solutions and experimental data, it becomes evident that this problem is effectively solved for sharp-nosed slender wings and bodies of revolution. The shock-expansion and tangent-wedge (or tangent-cone) method may also be used to construct the flow field. An examination of the equations of motion shows that the simple tangent-wedge (or cone) method, which is thought by some to be largely semiempirical, actually has a sound theoretical basis. At hypersonic speeds the flow over sharp-nosed slender shapes cannot be properly treated without considering boundary-layer-external flow interactions. Since the mass flux through the boundary layer is small, the streamlines entering the boundary layer are very nearly parallel to the outer edge. In other words, the flow inclination there is the sum of the body inclination and the slope of the boundary layer, and the local pressure is related to the boundary-layer growth rate by means of the tangent-wedge (or tangent-cone) approximation. A second relation between these quantities is provided by the Prandtl boundary-layer equations. For both strong and weak interactions over inclined wedges, for example, the governing viscous interaction parameter is (Mach Number)~3/(Reynolds Number)~(1/2). The straightforward approach to this problem seems to be adequate when the Reynolds Number based on leading-edge thickness, Re_t, is a few hundred or less. For larger Re_t the experimentally measured induced pressures on flat surfaces suggest that the strong bow shock decays surprisingly slowly at high Mach Numbers and that the expansion waves reflected from this shock and impinging on the surface may overwhelm the purely viscous effect. For blunt bodies the modified Newtonian approximation in the form C_p/C_(pmax) = sin~2 θ_b is highly accurate for Mach Numbers above 2.0, even for shapes with rapidly varying (convex) curvature. Current treatments of heat transfer over such bodies are limited to small temperature differences between gas and body surface. For this case the agreement between Sibulkin's theoretical result and experiments in the Mach Number range 2 < M < 5 is good. For large temperature differences an expression quite similar to Sibulkin's is derived based on gas properties evaluated at the surface temperature. This problem appears to be a fruitful one for the investigation of the influence of high temperature gas phenomena on hypersonic fluid mechanics.
机译:本文讨论了近年来我们对高超音速流动的理解发展的一些领域,其中特别提到了高音速相似性概念和高音速近似。细长体上的边界层与外部无粘性流之间的相互作用;以及钝体上的流动,包括传热问题。当将由高超音速近似(牛顿,冲击扩展,切线楔形和圆锥形)预测的不粘压力分布与“精确”解和实验数据进行比较时,很明显,对于尖锐的细长机翼,该问题已得到有效解决。和革命机构。冲击扩展和切线楔形(或切线圆锥形)方法也可以用于构造流场。对运动方程的研究表明,一些人认为简单的正切楔形(或圆锥形)方法在很大程度上是半经验的,实际上具有良好的理论基础。在高超声速下,如果不考虑边界层-外部流的相互作用,就无法正确处理尖锐的细长形状上的流。由于通过边界层的质量通量较小,因此进入边界层的流线非常接近于外边缘。换句话说,流动倾角是体倾角与边界层斜率之和,局部压力通过切线楔形(或切线圆锥形)近似值与边界层的生长速率有关。 。这些量之间的第二关系由Prandtl边界层方程式提供。例如,对于倾斜楔上的强相互作用和弱相互作用,控制粘性相互作用参数为(马赫数)〜3 /(雷诺数)〜(1/2)。当基于前沿厚度Re_t的雷诺数小于或等于几百时,直接解决该问题的方法就足够了。对于较大的Rett,实验测量的在平坦表面上的感应压力表明,在高马赫数下,强烈的弓形冲击出奇地缓慢衰减,并且由该冲击反射并撞击在表面上的膨胀波可能会压倒纯粘性效应。对于钝体,修正的牛顿近似形式C_p / C_(pmax)= sin〜2θ_b对于大于2.0的马赫数是非常准确的,即使对于曲率快速变化(凸)的形状也是如此。目前在这类物体上进行传热的方法仅限于气体与物体表面之间的温差小。对于这种情况,Sibulkin的理论结果与马赫数范围2

著录项

  • 来源
    《Journal of Spacecraft and Rockets 》 |2003年第5期| p.700-735| 共36页
  • 作者

    LESTER LEES;

  • 作者单位

    Aeronautics, C.I.T.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号