首页> 外文期刊>Journal of Spacecraft and Rockets >Space Launch System Core-Stage Rocket Engine Development for Shock-Tunnel Testing
【24h】

Space Launch System Core-Stage Rocket Engine Development for Shock-Tunnel Testing

机译:用于冲击隧道测试的太空发射系统核心级火箭发动机开发

获取原文
获取原文并翻译 | 示例
       

摘要

The NASA Space Launch System vehicle is composed of four RS-25 liquid oxygen and hydrogen rocket engines in the core stage and two five-segment solid rocket boosters. Because of the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and new vehicle configuration, subscale shock-tunnel propulsive testing was performed to reduce base environment uncertainty and lower vehicle design risk. The major testing challenges are that the shock-tunnel facility test duration spans only 30-160 ms and that similar engine development efforts for shock-tunnel testing have not been accomplished in 40+ years. As a result, various numerical models have been developed to design a 2% subscale Space Launch System core-stage gaseous oxygen and hydrogen rocket engine. Static hot-fire tests were conducted in the CUBRC Large Energy National Shock II facility at sea-level conditions to ascertain the combustion dynamics, engine performance, plume flowfield, and operational sensitivity. The model propulsion system satisfied all the design considerations, showed similar performance characteristics to the full-scale RS-25 propulsion system, confirmed minimal to no erosion of hardware, and demonstrated good agreement with numerical design predictions. High-speed video imaging showed that the model core-stage engine plumes have similar shock structure behavior and flow physics to the flight RS-25 engines. As described in this paper, novel engineering design and analyses methods, new engine materials, and cutting-edge diagnostic techniques showed that the subscale Space Launch System core-stage rocket engine satisfied all flow physics similarity parameters needed for high-fidelity short-duration base heating studies.
机译:NASA太空发射系统飞行器由位于核心阶段的四个RS-25液态氧和氢火箭发动机和两个五段固体火箭助推器组成。由于在上升和新的车辆配置过程中,火箭羽流在运载火箭基础内的流动具有复杂性,因此进行了小规模的冲击隧道推进试验,以减少基础环境的不确定性并降低运载工具的设计风险。主要的测试挑战是,冲击隧道设施的测试持续时间仅跨度30-160毫秒,并且40多年来未完成用于冲击隧道测试的类似发动机开发工作。结果,已经开发出各种数值模型来设计2%的小规模航天发射系统核心级气态氧气和氢气火箭发动机。在CUBRC国家第二次大型能源冲击中心设施中在海平面条件下进行了静态热火试验,以确定燃烧动力学,发动机性能,羽流场和运行灵敏度。该模型推进系统满足了所有设计考虑,显示出与全尺寸RS-25推进系统相似的性能特征,证实了极少的硬件腐蚀甚至没有腐蚀,并与数值设计预测很好地吻合。高速视频成像表明,该模型的核心级发动机羽流具有与RS-25飞行发动机相似的冲击结构行为和流场。如本文所述,新颖的工程设计和分析方法,新的发动机材料以及先进的诊断技术表明,超大规模航天发射系统核心级火箭发动机满足了高保真短时基础所需的所有流场相似性参数加热研究。

著录项

  • 来源
    《Journal of Spacecraft and Rockets》 |2018年第2期|382-402|共21页
  • 作者单位

    NASA Marshall Space Flight Ctr, Aerothermodynam, Aerosci Branch, Huntsville, AL 35812 USA;

    NASA Marshall Space Flight Ctr, Aerothermodynam, Aerosci Branch, Huntsville, AL 35812 USA;

    Qualis Corp, Jacobs Engn, Aerosci Branch, Huntsville, AL 35812 USA;

    CUBRC Inc, Aerothermal Aeroopt Evaluat Ctr, Buffalo, NY 14225 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:28:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号