首页> 外文期刊>Journal of Solution Chemistry >Pressure and Temperature Effects on the Molecular Rotation in Acetonitrile-Water Mixtures
【24h】

Pressure and Temperature Effects on the Molecular Rotation in Acetonitrile-Water Mixtures

机译:压力和温度对乙腈-水混合物分子旋转的影响

获取原文
获取原文并翻译 | 示例
           

摘要

NMR spin-lattice relaxation time (T 1) measurements were performed for 14N of acetonitrile in acetonitrile (CH3CN)—H2O mixtures and for 2H of heavy water in CH3CN—D2O mixtures at 30°C up to 294.2 MPa together with those for 2H in CH3CN—D2O mixtures at 10 and 20°C under atmospheric pressure over the whole composition range of the mixtures. IR absorption spectra for CH3CN—H2O and CH3CN—10 mol% HDO/D2O mixtures were obtained at 30°C under atmospheric pressure. Densities and viscosities of CH3CN—H2O mixtures were also measured under high pressure. The rotational correlation times for D2O [τ c (D)] and acetonitrile [τ c (N)] were determined from T 1 measurements. Under atmospheric pressure, τ c (D) exhibits a small maximum around 10 mol% of acetonitrile at each temperature, and the maximum position is almost independent of temperature. These results suggest that the dipole–dipole interaction between acetonitrile and water molecules plays an important role in determining the rotational motion of water molecules in the mixtures. This is supported by the variation of the peak for the bending vibration of water molecules with composition. The decreases in τ c (D) and τ c (N) at higher acetonitrile contents are ascribed to the formation of acetonitrile dimer, trimer, and oligomer aggregates. Except for τ c (D) in the water-rich region, the pressure coefficients of τ c (D) and τ c (N) are positive which is understood as a simple compression effect. Furthermore, the composition of mixture at which τ c (D) and τ c (N) show a maximum shifted to higher acetonitrile content with increasing pressure. These results are discussed in terms of the pressure effect on the equilibria of acetonitrile monomers with the aggregates of acetonitrile in the mixtures.
机译:在乙腈(CH3CN)-H2O混合物中对14N的乙腈进行NMR自旋晶格弛豫时间(T 1 )测量,对2 )测量在30°C至294.2 MPa的CH3 CN-D2 O混合物中的> H重水以及CH3 CN-D2 中的2 H中的重水在大气压下,在10和20°C的整个混合物范围内,> O混合物。在大气压下于30°C下获得CH3CN-H2O和CH3CN-10 mol%HDO / D2O混合物的红外吸收光谱。还在高压下测量了CH3CN-H2O混合物的密度和粘度。从T 1 测量值确定D2 O [τc (D)]和乙腈[τc (N)]的旋转相关时间。在大气压下,τc (D)在每个温度下的乙腈含量大约为10 mol%,其最大值很小,并且最大值位置几乎与温度无关。这些结果表明,乙腈与水分子之间的偶极-偶极相互作用在确定混合物中水分子的旋转运动中起着重要作用。水分子的弯曲振动峰值随组成的变化而得到支持。乙腈含量较高时τc (D)和τc (N)的减少归因于乙腈二聚体,三聚体和低聚物聚集体的形成。除了富水区的τc (D)以外,τc (D)和τc (N)的压力系数均为正,这被理解为简单压缩影响。此外,随着压力的增加,在τc (D)和τc (N)处最大的混合物组成向较高的乙腈含量转移。根据压力对乙腈单体与混合物中乙腈聚集体平衡的影响进行讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号