...
首页> 外文期刊>Journal of Solid Waste Technology and Management >SIMULATION OF THE CO-GASIFICATION OF KENTUCKY COAL AND BIOMASS IN AN ENTRAINED FLOW GASIFIER
【24h】

SIMULATION OF THE CO-GASIFICATION OF KENTUCKY COAL AND BIOMASS IN AN ENTRAINED FLOW GASIFIER

机译:气流床中肯塔基煤与生物质的共气化模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Gasification gives the solid hydrocarbon waste a better chance to be used efficiently through the combined cycle and at a much less harmful emission. Co-gasification of municipal solid waste, and biomass or industrial waste that hold a large fraction of hydrocarbon is emerging as a common practice to reduce their environmental impact. However, the gasifier conditions and design need to be adjusted according to the composition of the feedstock, and that needs to be tuned and optimized. This work assesses the gasification conditions of three different Kentucky coal and biomass mixtures (10% biomass, 25% biomass and 50% biomass) in an entrained flow gasifier. It is presented numerically in an attempt to obtain a comparative analysis between the optimum operation conditions for the three feedstocks. The numerical model uses an Eulerian-Lagrangian approach, with discrete-phase model of feedstock in a continuous model of oxidant. This model also takes into account the turbulent flow (SST k-w model), gas phase gasification (Species Transport), particles devolatilization (Kobayashi Two-Competing Rate model), heterogeneous char reaction (Multiple Surface reaction), particle dispersion by turbulent flow (Stochastic Discrete Random Walk model), radiation (P1 model) and solid particle distribution (Rosin Rammler model). The temperature distribution and product distribution of the developed model is captured. There was an increasing trend, from 10% biomass to 50% biomass, of the gas composition of CO_2 and H_2O in the gasifier. However, there was a decreasing trend, from 10% biomass to 50% biomass, of the gas composition of CO and H_2. The role of particle size showed that larger sizes (534nm) gives less syngas yield as compared to smaller sizes (134nm).
机译:气化使固体烃废物有更好的机会在联合循环中得到有效利用,并且有害排放量少得多。为了减少对环境的影响,一种常见的做法是将城市固体废物与含有大量碳氢化合物的生物质或工业废物进行共气化。但是,气化炉的条件和设计需要根据原料的组成进行调整,并且需要进行调整和优化。这项工作评估了气流床气化炉中三种不同肯塔基州煤炭和生物质混合物(10%的生物质,25%的生物质和50%的生物质)的气化条件。对其进行了数值模拟,以期对三种原料的最佳操作条件进行比较分析。数值模型使用欧拉-拉格朗日方法,在连续的氧化剂模型中使用原料的离散相模型。该模型还考虑了湍流(SST kw模型),气相气化(物种运输),颗粒挥发(小林两次竞争速率模型),非均质炭反应(多表面反应),湍流引起的颗粒分散(随机)离散随机游走模型),辐射(P1模型)和固体颗粒分布(Rosin Rammler模型)。捕获开发模型的温度分布和产品分布。气化炉中CO_2和H_2O的气体组成从10%生物量增加到50%生物量。但是,CO和H_2的气体组成从10%减少到50%。粒径的作用表明,与较小的尺寸(134nm)相比,较大的尺寸(534nm)产生的合成气产率较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号