...
首页> 外文期刊>Journal of solar energy engineering >Analysis of Advanced Supercritical Carbon Dioxide Power Cycles With a Bottoming Cycle for Concentrating Solar Power Applications
【24h】

Analysis of Advanced Supercritical Carbon Dioxide Power Cycles With a Bottoming Cycle for Concentrating Solar Power Applications

机译:具有底部循环的先进超临界二氧化碳功率循环分析,用于聚光太阳能应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A number of studies have been performed to assess the potential of using supercritical carbon dioxide (S-CO2) in closed-loop Brayton cycles for power generation. Different configurations have been examined among which recompression and partial cooling configurations have been found very promising, especially for concentrating solar power (CSP) applications. It has been demonstrated that the S-CO2 Brayton cycle using these configurations is capable of achieving more than 50% efficiency at operating conditions that could be achieved in central receiver tower type CSP systems. Although this efficiency is high, it might be further improved by considering an appropriate bottoming cycle utilizing waste heat from the top S-CO2 Brayton cycle. The organic Rankine cycle (ORC) is one alternative proposed for this purpose; however, its performance is substantially affected by the selection of the working fluid. In this paper, a simple S-CO_2 Brayton cycle, a recompression S-CO_2 Brayton cycle, and a partial cooling S-CO_2 Brayton cycle are first simulated and compared with the available data in the literature. Then, an ORC is added to each configuration for utilizing the waste heat. Different working fluids are examined for the bottoming cycles and the operating conditions are optimized. The combined cycle efficiencies and turbine expansion ratios are compared to find the appropriate working fluids for each configuration. It is also shown that combined recompression-ORC cycle achieves higher efficiency compared with other configurations.
机译:已经进行了许多研究,以评估在闭环布雷顿循环中使用超临界二氧化碳(S-CO2)进行发电的潜力。已经研究了不同的配置,其中再压缩和部分冷却配置非常有前途,特别是在聚光太阳能(CSP)应用中。已经证明,使用这些配置的S-CO2布雷顿循环能够在中央接收塔式CSP系统所能达到的工作条件下实现50%以上的效率。尽管此效率很高,但可以考虑使用顶部S-CO2布雷顿循环产生的余热,通过考虑适当的底部循环来进一步提高效率。为此,提出了一种有机朗肯循环(ORC)。但是,其性能很大程度上受工作流体的选择影响。在本文中,首先模拟了简单的S-CO_2布雷顿循环,再压缩S-CO_2布雷顿循环和部分冷却的S-CO_2布雷顿循环,并将其与文献中的可用数据进行了比较。然后,将ORC添加到每个配置中以利用废热。检查不同的工作液的触底循环,并优化操作条件。比较组合的循环效率和涡轮膨胀比,以找到每种配置合适的工作流体。还显示了与其他配置相比,组合的再压缩-ORC循环实现了更高的效率。

著录项

  • 来源
    《Journal of solar energy engineering》 |2014年第1期|010904.1-010904.7|共7页
  • 作者单位

    Clean Energy Research Center, University of South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620;

    Clean Energy Research Center, University of South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号