...
首页> 外文期刊>Journal of soil & sediments >Potential of AFM-nanothermal analysis to study the microscale thermal characteristics in soils and natural organic matter (NOM)
【24h】

Potential of AFM-nanothermal analysis to study the microscale thermal characteristics in soils and natural organic matter (NOM)

机译:AFM纳米热分析技术研究土壤和天然有机物(NOM)的微观热学特征的潜力

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose This exploratory study evaluates the potential of nanothermal analysis (nTA) coupled with atomic force microscopy (AFM) of soil samples for understanding physicochemical processes in soil and for linking the nanospatial and microspatial distribution of thermal characteristics with the macroscopic properties of soil samples. Materials and methods Soil and reference samples were investigated by differential scanning calorimetry and AFM-nTA. nTA was conducted on 16 points of each AFM image in two subsequent heating cycles (55-120℃ and 55-300℃, respectively). Thermograms were subdivided into characteristic types and their spatial distribution was compared between sample replicates and materials. Results and discussion Thermogram types consisted of partly structured expansion and compression phases, suggesting material-specific thermal profiles. The distribution of thermogram types reflected sample-dependent nanoscale and microscale heterogeneity. Indications for water molecule bridge transitions were found by nTA in peat and soil. Organic materials generally revealed strong expansion and irreversible compression phases, latter probably due to the collapse of pore and aggregate structures. In contrast to charcoal and manure, peat shows strong expansion below 120℃ and compression only above 120℃. Conclusions All investigated samples are heterogeneous on the nanoscale and microscale with respect to thermal behaviour. AFM-nTA allows distinguishing numerous different materials on nanometre and micrometre scales in soil samples. The material-dependent characteristics will help in understanding and learning more about the nanoscale distribution of different materials and properties. Related to the macroscopic thermal behaviour, this will allow studying links between the properties of biogeochemical interfaces and the processes governed by them.
机译:目的这项探索性研究评估了土壤样品的纳米热分析(nTA)和原子力显微镜(AFM)结合的潜力,以了解土壤中的物理化学过程,并将热特征的纳米空间和微空间分布与土壤样品的宏观特性联系起来。材料和方法通过差示扫描量热法和AFM-nTA研究土壤和参考样品。在随后的两个加热周期(分别为55-120℃和55-300℃)中,对每个AFM图像的16个点进行nTA。将热分析图细分为特征类型,并比较样品重复样品和材料之间的空间分布。结果与讨论热分析图类型由部分结构化的膨胀和压缩阶段组成,表明材料特定的热曲线。热谱图类型的分布反映了样品依赖性的纳米级和微米级异质性。 nTA在泥炭和土壤中发现了水分子桥过渡的迹象。有机材料通常显示出强烈的膨胀和不可逆的压缩阶段,后者可能是由于孔隙和聚集体结构的崩溃所致。与木炭和肥料相反,泥炭在120℃以下显示出强烈的膨胀,而在120℃以上显示出压缩。结论就热行为而言,所有调查的样品在纳米级和微米级都是异质的。 AFM-nTA可以区分土壤样品中纳米级和微米级的多种不同材料。取决于材料的特性将有助于理解和学习更多有关不同材料和特性的纳米级分布。与宏观热行为有关,这将允许研究生物地球化学界面的性质与它们所控制的过程之间的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号