首页> 外文期刊>Journal of Scientific Computing >High Order Spatial Generalization of 2D and 3D Isotropic Discrete Gradient Operators with Fast Evaluation on GPUs
【24h】

High Order Spatial Generalization of 2D and 3D Isotropic Discrete Gradient Operators with Fast Evaluation on GPUs

机译:2D和3D各向同性离散梯度算子的高阶空间泛化,并在GPU上进行快速评估

获取原文
获取原文并翻译 | 示例
       

摘要

Based on the concept of isotropic centered finite differences, this work generalizes the spatial order of accuracy of the 2D and 3D isotropic discrete gradient operators to a higher order. A suitable methodology is used to obtain a set of equations from which it is possible to deduce stencil weights to achieve numerical approximations of both high order spatial and high order isotropic gradients. We consider that the suggested discretization will be useful for enhancing the quality of the results in various scientific fields. The spatial order (S) controls the spatial order of accuracy of the gradient norm and direction, while the isotropic order (I) controls, in some situations, the spatial order of accuracy of the gradient direction. A useful list of the stencil weights needed to construct different high order spatial and isotropic gradients is given. Numerical tests show that the numerical spatial orders of accuracy of the gradient approximation are the same as those predicted theoretically. Also, to illustrate the benefit of the new discretizations, some simulations with a multiphase lattice Boltzmann model are presented. Then, a series of benchmarks comparing various efficient convolution algorithms used to compute function or image gradients is presented. Different platforms implemented on CPUs and GPUs are studied, namely: plain MATLAB; the Jacket plugin for MATLAB; and CUDA. The results show situations in which substantial computational speedup can be obtained with CUDA and the Jacket plugin for MATLAB versus MATLAB on a CPU. Examples of 2D and 3D gradient computations using convolution products performed with our code are available for download as electronic supplementary material.
机译:基于各向同性中心有限差分的概念,这项工作将2D和3D各向同性离散梯度算子的精度空间顺序推广到了更高的层次。使用合适的方法来获取一组方程,从中可以推导出模板权重以实现高阶空间梯度和高阶各向同性梯度的数值近似。我们认为,建议的离散化将有助于提高各个科学领域的结果质量。空间阶数(S)控制梯度范数和方向的精度的空间次序,而各向同性阶数(I)在某些情况下控制梯度方向的精度的空间次序。给出了构建不同的高阶空间和各向同性梯度所需的模板权重的有用列表。数值试验表明,梯度近似精度的数值空间阶次与理论上预测的相同。同样,为了说明新离散化的好处,提出了一些使用多相晶格Boltzmann模型的仿真。然后,提出了一系列基准,比较了用于计算函数或图像梯度的各种有效卷积算法。研究了在CPU和GPU上实现的不同平台,即:纯MATLAB; MATLAB的Jacket插件;和CUDA。结果显示了使用CUDA和适用于MATLAB的Jacket插件与CPU上的MATLAB相比,可以大大提高计算速度的情况。使用以我们的代码执行的卷积乘积进行2D和3D梯度计算的示例可作为电子补充材料下载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号