首页> 外文期刊>Journal of propulsion and power >Unsteady Flow Evolution Through a Turning Midturbine Frame Part 1: Time-Resolved Flow
【24h】

Unsteady Flow Evolution Through a Turning Midturbine Frame Part 1: Time-Resolved Flow

机译:通过旋转中涡轮机架的非定常流动演变:第1部分:时间分辨的流动

获取原文
获取原文并翻译 | 示例
           

摘要

This paper identifies and analyzes the propagation of aerodynamic deterministic stresses through a two-spool counter-rotating transonic facility representative of modern and future turbine aeroengine sections. The test setup consists of a high-pressure stage, a diffusing turning midturbine frame with turning struts, and a counter-rotating low-pressure rotor. The flowfield downstream of the high-pressure stage is strongly influenced by the stator-rotor interaction. Such a mechanism interacts again with the downstream turning midturbine frame leading to a vane-rotor-vane interaction, which affects the behavior of the low-pressure stage. The results presented were obtained using a fast-response aerodynamic pressure probe for unsteady measurements as well as three-dimensional unsteady Reynolds-averaged Navier-Stokes calculations. The work is presented in two parts. This first part focuses on the explanation of the flow physics that governs the convection of unsteady three-dimensional flow through the midturbine duct. Viscous and inviscid mechanisms are discussed as main drivers for the convection of wakes, secondary vortices, and shocks. The flowfield in the duct is characterized by three superimposed effects: 1) duct diffusion and radial pressure gradient together with turning strut potential field, 2) rotor unsteady work source, and 3) vane/blade interaction phenomena. The understanding of these mechanisms will eventually help to control the unsteadiness content in future architectures where reduced engine component length will enhance the interaction effects.
机译:本文通过代表现代和未来涡轮航空发动机截面的两阀芯反向旋转跨音速设备,识别并分析了空气动力学确定性应力的传播。该测试装置包括一个高压台,一个带有转向支柱的扩散转向中轮机框架和一个反向旋转的低压转子。高压级下游的流场受定子-转子相互作用的强烈影响。这种机制再次与下游旋转中涡轮框架相互作用,从而导致叶片-转子-叶片相互作用,从而影响低压级的行为。给出的结果是使用快速响应气动压力探头进行非稳态测量以及三维非稳态雷诺平均Navier-Stokes计算获得的。这项工作分为两个部分。第一部分着重于流动物理的解释,该理论控制了通过涡轮中部的不稳定三维流的对流。粘性和无粘性机制是尾流,次级涡流和冲击对流的主要驱动力。管道中的流场具有三个叠加效应:1)管道扩散和径向压力梯度以及转向支柱势场; 2)转子不稳定的工作源; 3)叶片/叶片相互作用现象。对这些机制的理解最终将有助于控制未来架构中不稳定的内容,在这些架构中,减少引擎组件长度将增强交互效果。

著录项

  • 来源
    《Journal of propulsion and power》 |2015年第6期|1586-1596|共11页
  • 作者单位

    Graz University of Technology, A-8010 Graz, Austria,Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, Universita di Genova 16146 Genova, Italy;

    Graz University of Technology, A-8010 Graz, Austria,Whittle Laboratory, Department of Engineering, University of Cambridge, Cambridge, England CB2 1TN, United Kingdom;

    Graz University of Technology, A-8010 Graz, Austria,Dipartimento di Energia, Politecnico di Milano 20133 Milano, Italy;

    Graz University of Technology, A-8010 Graz, Austria;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号