首页> 外文期刊>Journal of power sources >Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM fuel cells
【24h】

Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM fuel cells

机译:孔隙度分布变化对PEM燃料电池气体扩散层中液态水通量的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Flooding of the membrane electrode assembly (MEA) and dehydrating of the polymer electrolyte membrane have been the key problems to be solved for polymer electrolyte membrane fuel cells (PEMFCs). So far, almost no papers published have focused on studies of the liquid water flux through differently structured gas diffusion layers (GDLs). For gas diffusion layers including structures of uniform porosity, changes in porosity (GDL with microporous layer (MPL)) and gradient change porosity, using a one-dimensional model, the liquid saturation distribution is analyzed based on the assumption of a fixed liquid water flux through the GDL. And then the liquid water flux through the GDL is calculated based on the assumption of a fixed liquid saturation difference between the interfaces of the catalyst layer/GDL and the GDL/gas channel. Our results show that under steady-state conditions, the liquid water flux through the GDL increases as contact angle and porosity increase and as the GDL thickness decreases. When a MPL is placed between the catalyst layer and the GDL, the liquid saturation is redistributed across the MPL and GDL. This improves the liquid water draining performance. The liquid water flux through the GDL increases as the MPL porosity increases and the MPL thickness decreases. When the total thickness of the GDL and MPL is kept constant and when the MPL is thinned to 3 mu m, the liquid water flux increases considerably, i.e. flooding of MEA is difficult. A GDL with a gradient of porosity is more favorable for liquid water discharge from catalyst layer into the gas channel; for the GDLs with the same equivalent porosity, the larger the gradient is, the more easily the liquid water is discharged. Of the computed cases, a GDL with a linear porosity 0.4x+0.4 is the best.
机译:膜电极组件(MEA)的注满和聚合物电解质膜的脱水已经成为聚合物电解质膜燃料电池(PEMFC)要解决的关键问题。到目前为止,几乎没有发表的论文集中于研究通过不同结构的气体扩散层(GDL)的液态水通量。对于具有均匀孔隙结构,孔隙率变化(带有微孔层的GDL)和梯度变化孔隙率的气体扩散层,使用一维模型,基于固定的液态水通量的假设来分析液体饱和度分布通过GDL。然后,基于在催化剂层/ GDL和GDL /气体通道的界面之间的液体饱和度差固定的假设,计算通过GDL的液体水通量。我们的结果表明,在稳态条件下,通过GDL的液态水通量随着接触角和孔隙率的增加以及GDL厚度的减小而增加。当在催化剂层和GDL之间放置MPL时,液体饱和度会在MPL和GDL之间重新分配。这改善了液体排水性能。随着MPL孔隙率的增加和MPL厚度的减小,通过GDL的液态水通量增加。当GDL和MPL的总厚度保持恒定并且当MPL变薄至3μm时,液态水通量显着增加,即,MEA的溢流困难。孔隙率梯度的GDL更有利于液态水从催化剂层排放到气体通道中。对于具有相同当量孔隙率的GDL,梯度越大,液态水越容易排出。在计算的情况下,线性孔隙率为0.4x + 0.4的GDL最好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号