首页> 外文期刊>Journal of power sources >Hydrogen For Fuel Cells From Ethanol By Steam-reforming, Partial-oxidation And Combined Auto-thermal Reforming: A Thermodynamic Analysis
【24h】

Hydrogen For Fuel Cells From Ethanol By Steam-reforming, Partial-oxidation And Combined Auto-thermal Reforming: A Thermodynamic Analysis

机译:蒸汽重整,部分氧化和自热重整相结合的乙醇燃料电池用氢气:热力学分析

获取原文
获取原文并翻译 | 示例
       

摘要

Thermodynamics of hydrogen production from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming was investigated as a function of steam-to-ethanol ratio (0.00-10.00), oxygen-to-ethanol ratio (0.00-2.50) and temperatures (200-1000 ℃) at atmospheric pressure. Thermodynamically ethanol is fully converted already at low temperatures. Main product at low temperatures is methane, which changes to hydrogen with increased temperature. At elevated temperature also carbon monoxide content increases, which is in accordance with the water-gas-shift reaction. Coke-formation is a serious issue, especially at low steam-to-ethanol (S/E) ratios. Coke-formation free steam-reforming is possible above S/E > 3. Steam-reforming achieves the highest hydrogen-yield, which is almost up to the theoretical value at high steam-to-ethanol ratios. Pure partial-oxidation shows similar trends of hydrogen and carbon monoxide content with temperature and oxygen-to-ethanol (O/E) ratio; therefore high hydrogen content is always accompanied by high carbon monoxide content. Partial-oxidation shows a low hydrogen yield and the avoidance of coke formation demands high temperatures or high O/E ratios, whereas nitrogen dilution increases strongly with O/E ratios. IncreasingO/E-ratio from 0.00 to 0.75 in auto-thermal reforming shows no strong effect on the hydrogen and carbon monoxide formation at temperatures below 600 ℃ and over the whole S/E-ratio range. Auto-thermal operation reduces the coke-formation and reduces energy demand for the reforming process.
机译:研究了通过蒸汽重整,部分氧化和联合自热重整从乙醇生产氢的热力学与蒸汽/乙醇比(0.00-10.00),氧-乙醇比(0.00-2.50)和温度(200-1000℃)和大气压下。在热力学上,乙醇已经在低温下完全转化。低温下的主要产物是甲烷,甲烷随着温度的升高而变成氢气。在升高的温度下,一氧化碳含量也增加,这与水煤气变换反应一致。焦炭形成是一个严重的问题,尤其是在蒸汽与乙醇(S / E)比例低的情况下。高于S / E> 3时,可以进行无焦化的蒸汽重整。蒸汽重整可实现最高的氢产率,在高的蒸汽与乙醇比率下,该产率几乎达到理论值。纯的部分氧化显示出氢气和一氧化碳含量随温度和氧气与乙醇(O / E)比的变化趋势。因此,高氢含量总是伴随着高一氧化碳含量。部分氧化显示出低的氢产率,并且避免焦炭形成需要高温或高O / E比,而氮稀释随O / E比而强烈增加。在自热重整中,O / E比率从0.00增加到0.75,对温度低于600℃且在整个S / E比率范围内的氢和一氧化碳形成没有强烈影响。自动热操作减少了焦炭生成,并降低了重整过程的能源需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号