首页> 外文期刊>Journal of power sources >Study On Microstructure And Electrochemical Performance Of La_(0.7)mg_(0.3)(ni_(0.9)co_(0.1))_x Hydrogen Storage Alloys
【24h】

Study On Microstructure And Electrochemical Performance Of La_(0.7)mg_(0.3)(ni_(0.9)co_(0.1))_x Hydrogen Storage Alloys

机译:La_(0.7)mg_(0.3)(ni_(0.9)co_(0.1))_ x储氢合金的组织和电化学性能的研究

获取原文
获取原文并翻译 | 示例
       

摘要

Hydrogen storage alloys La_(0.7)Mg_(0.3)(Ni_(0.9)Co_(0.1))_x (x = 3.0, 3.1, 3.3, 3.4, 3.5, 3.7 and 3.8) were prepared by inductive melting followed by annealing treatment at 1173 K for 6h. The effects of the stoichiometry (x) on the structural and electrochemical characteristics of the alloys were investigated systematically. X-ray diffraction (XRD), optical morphology and energy dispersive spectrometry (EDS) analyses showed that these alloys have a multiphase structure which consists of a (La, Mg)Ni_3 phase with the PuNi_3-type rhombohedral structure, a LaNi_5 phase with the CaCu_5-type hexagonal structure and a (La, Mg)_2Ni_7 phase with the Ce_2 Ni_7-type hexagonal structure. The main phase of the alloys with x = 3.0 and 3.1 is (La, Mg)Ni_3 phase (PuNi_3-type structure), the main phase of the alloys with x = 3.3, 3.4 and 3.5 is (La, Mg)_2Ni_7 phase (Ce_2Ni_7-type structure), and the main phase of the alloys with x = 3.7 and 3.8 is LaNi_5 phase (CaCu_5-type structure). Moreover, the lattice parameters of the (La, Mg)Ni_3 phase, (La, Mg)_2Ni_7 phase and LaNi_5 phase decrease monotonously with the increase of the value x. The electrochemical analysis shows that the maximum discharge capacity increases from 356.6 mAhg~(-1) (x = 3.0) to 392.1 mAhg~(-1) (x = 3.5) and then decreases to 344.1 mAhg~(-1) (x = 3.8), and the alloys exhibit good cycling stability. As the discharge current density is 3000 mA g~(-1), the high-rate dischargeability (HRD) increases from 30.1% (x = 3.0) to 56.1% (x=3.8). The low temperature dischargeability (LTD) increases from 24.3% (x = 3.0) to 58.96% (x = 3.7) and then decreases to 48.1% (x = 3.8).
机译:储氢合金La_(0.7)Mg_(0.3)(Ni_(0.9)Co_(0.1))_ x(x = 3.0,3.1,3.3,3.4,3.5,3.7和3.8)的制备是通过感应熔炼,然后在1173进行退火处理K 6h。系统研究了化学计量比(x)对合金的结构和电化学特性的影响。 X射线衍射(XRD),光学形态学和能量色散光谱(EDS)分析表明,这些合金具有多相结构,包括(La,Mg)Ni_3相和PuNi_3型菱面体结构,以及LaNi_5相和CaCu_5型六方结构和(La,Mg)_2Ni_7相与Ce_2Ni_7型六方结构。 x = 3.0和3.1的合金的主要相为(La,Mg)Ni_3相(PuNi_3型结构),x = 3.3、3.4和3.5的合金的主要相为(La,Mg)_2Ni_7相( Ce_2Ni_7型结构),x = 3.7和3.8的合金的主要相为LaNi_5相(CaCu_5型结构)。而且,(La,Mg)Ni_3相,(La,Mg)_2Ni_7相和LaNi_5相的晶格参数随着x值的增加而单调减小。电化学分析表明,最大放电容量从356.6 mAhg〜(-1)(x = 3.0)增加到392.1 mAhg〜(-1)(x = 3.5),然后降低到344.1 mAhg〜(-1)(x = 3.8),并且合金表现出良好的循环稳定性。当放电电流密度为3000 mA g〜(-1)时,高倍率放电率(HRD)从30.1%(x = 3.0)增加到56.1%(x = 3.8)。低温放电率(LTD)从24.3%(x = 3.0)增加到58.96%(x = 3.7),然后降低到48.1%(x = 3.8)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号