...
首页> 外文期刊>Journal of power sources >Mesoporous Cr_2O_3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation
【24h】

Mesoporous Cr_2O_3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation

机译:介孔Cr_2O_3作为锂电池的负极:TEM研究织构对聚合物层形成的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mesoporous single crystal (PSC) oxides have been reported as presenting higher electrochemical performances than bulk materials in lithium ion batteries operating via intercalation processes. Here, we extend this study to the electrochemical behaviour of mesoporous Cr_2O_3 versus Li~+/Li~0. We confirm that the Cr_2O_3 reacts towards Li through a conversion reaction mechanism leading, upon discharge, to the formation of large metallic chromium nanoparticles (10 nm); the latter are embedded into a Li_2O matrix together with, in this specific case, a copious amount of polymeric materials coming from electrolyte degradation, surrounding the particles, and filling the pores. During the following charge, re-oxidation of the nanoparticles occurs with the formation of CrO_(1-x), with the main difference, as opposed to bulk Cr_2O_3 electrodes, being the preservation of the polymeric layer at the end of the charge. We believe the material mesoporosity, via capillary effects, to be at the origin of such a difference. These electrolyte degradation products are shown to help in maintaining the material mesoporosity for a great number of cycles; and interestingly they are not detrimental to the cell performance in terms of capacity retention while presenting great advantages in terms of charge transfer by reducing diffusion lengths, namely for Li~+ ions. The positive attributes of mesoporous material-based electrodes noticed for insertion reactions can then be extended to conversion reaction electrodes as long as we can master their synthesis while controlling their mesoporosity through either soft or hard templating techniques.
机译:据报道,介孔单晶(PSC)氧化物比通过插层工艺运行的锂离子电池中的块状材料具有更高的电化学性能。在这里,我们将这项研究扩展到中孔Cr_2O_3对Li〜+ / Li〜0的电化学行为。我们证实,Cr_2O_3通过转换反应机理与Li反应,导致放电后形成大的金属铬纳米粒子(10 nm);后者与这种情况下的大量聚合物材料一起埋入Li_2O基质中,这些材料来自电解质降解,围绕颗粒并填充孔。在随后的充电过程中,纳米颗粒的再氧化随着CrO_(1-x)的形成而发生,与本体Cr_2O_3电极相反,主要区别在于电荷结束时聚合物层的保留。我们认为,由于毛细作用,材料的介孔性是造成这种差异的根源。这些电解质降解产物显示出有助于在许多循环中保持材料的介孔性。有趣的是,它们在容量保持方面对电池性能无害,同时通过减小扩散长度(即Li +离子)在电荷转移方面表现出极大的优势。然后,只要我们能够通过软模板或硬模板技术控制其介孔性,并掌握其合成过程,就可以将插入反应中介孔材料基电极的积极特性扩展到转化反应电极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号