...
首页> 外文期刊>Journal of power sources >Physics-based modeling of a low-temperature solid oxide fuel cell with consideration of microstructure and interfacial effects
【24h】

Physics-based modeling of a low-temperature solid oxide fuel cell with consideration of microstructure and interfacial effects

机译:考虑微观结构和界面效应的低温固体氧化物燃料电池的基于物理的建模

获取原文
获取原文并翻译 | 示例
           

摘要

The main objective of this paper is to develop a physical model for the simulation of heat/mass transport and electrochemical process in a solid oxide fuel cell. The model is then used to evaluate the effects of lowering the operating temperature for a solid oxide fuel cell. This model consists of two submodels, i.e., a micro-scale submodel and a macro-scale submodel. The macro-scale submodel is based on the continuum conservation laws. The micro-scale submodel addresses the complex relationships among the transport phenomena in the electrodes and electrolyte, which includes the transport of electron, ion, and gas molecules through the composite electrodes, electrolyte, and triple-phase boundary region. After integrating the two submodels, the dependence of electrochemical performance on the temperature, global geometrical parameter, and microstructures (porosity, volume fraction and composite ratio, etc.) were assessed.rnResults demonstrate that for a reduced-temperature solid oxide fuel cell with composite electrodes, its performance is also lowered due to a higher ohmic loss in electrolyte and a slower electrochemical kinetics in the cathode. Among the various microstructure parameters for electrodes, the particle size and TPB length are the most important factors that dominate the performance of a reduced-temperature SOFC. In addition, optimal thicknesses for the electrodes exist. It is believed that the current work will provide a valuable model approach, which can be used to help understand the complex transport phenomena in electrodes and optimize the design of a reduced-temperature solid oxide fuel cell.
机译:本文的主要目的是建立一个物理模型,用于模拟固体氧化物燃料电池中的热/质量传递和电化学过程。然后,该模型用于评估降低固体氧化物燃料电池工作温度的影响。该模型包括两个子模型,即,微观子模型和宏观子模型。宏观子模型基于连续性守恒定律。微观子模型解决了电极和电解质中传输现象之间的复杂关系,其中包括电子,离子和气体分子通过复合电极,电解质和三相边界区域的传输。整合两个子模型后,评估了电化学性能对温度,整体几何参数和微观结构(孔隙率,体积分数和复合比例等)的依赖性。结果表明,具有复合材料的低温固体氧化物燃料电池电极,由于电解质中较高的欧姆损耗和阴极中较慢的电化学动力学,其性能也会降低。在电极的各种微结构参数中,粒径和TPB长度是控制低温SOFC性能的最重要因素。另外,存在电极的最佳厚度。可以认为,当前的工作将提供有价值的模型方法,可用于帮助理解电极中的复杂传输现象,并优化低温固态氧化物燃料电池的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号