首页> 外文期刊>Journal of power sources >On the role of ultra-thin oxide cathode synthesis on the functionality of micro-solid oxide fuel cells: Structure, stress engineering and in situ observation of fuel cell membranes during operation
【24h】

On the role of ultra-thin oxide cathode synthesis on the functionality of micro-solid oxide fuel cells: Structure, stress engineering and in situ observation of fuel cell membranes during operation

机译:关于超薄氧化物阴极合成对微固体氧化物燃料电池功能的作用:运行期间燃料电池膜的结构,应力工程和原位观察

获取原文
获取原文并翻译 | 示例
       

摘要

Microstructure and stresses in dense La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_3 (LSCF) ultra-thin films have been investigated to increase the physical thickness of crack-free cathodes and active area of thermo-mechanically robust micro-solid oxide fuel cell (μSOFC) membranes. Processing protocols employ low deposition rates to create a highly granular nanocrystalline microstructure in LSCF thin films and high substrate temperatures to produce linear temperature-dependent stress evolution that is dominated by compressive stresses in μSOFC membranes. Insight and trade-off on the synthesis are revealed by probing microstructure evolution and electrical conductivity in LSCF thin films, in addition to in situ monitoring of membrane deformation while measuring μSOFC performance at varying temperatures. From these studies, we were able to successfully fabricate failure-resistant square μSOFC (LSCF/YSZ/Pt) membranes with width of 250μm and crack-free cathodes with thickness of ~70nm. Peak power density of ~120mW cm~(-2) and open circuit voltage of ~0.6V at 560℃ were achieved on a μSOFC array chip containing ten such membranes. Mechanisms affecting fuel cell performance are discussed. Our results provide fundamental insight to pathways of microstructure and stress engineering of ultra-thin, dense oxide cathodes and μSOFC membranes.
机译:研究了致密La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_3(LSCF)超薄膜中的微观结构和应力,以增加无裂纹阴极的物理厚度和热机械强度的有效面积微固体氧化物燃料电池(μSOFC)膜。加工协议采用低沉积速率在LSCF薄膜中创建高度颗粒状的纳米晶体微观结构,并采用较高的基板温度以产生依赖于温度的线性温度依赖性应力演化,而应力演化主要由μSOFC膜中的压缩应力主导。除了现场监测膜变形,同时在不同温度下测量μSOFC性能,还可以通过探测LSCF薄膜的微观结构演变和电导率来揭示对合成的见解和权衡。从这些研究中,我们能够成功地制造出宽度为250μm的抗故障方形μSOFC(LSCF / YSZ / Pt)膜和厚度约为70nm的无裂纹阴极。在包含十个此类膜的μSOFC阵列芯片上,在560℃时,峰值功率密度为〜120mW cm〜(-2),开路电压为〜0.6V。讨论了影响燃料电池性能的机制。我们的结果为超薄致密氧化物阴极和μSOFC膜的微观结构和应力工程途径提供了基础性的见识。

著录项

  • 来源
    《Journal of power sources》 |2010年第16期|p.5185-5196|共12页
  • 作者单位

    Harvard School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Pierce Hall, Cambridge, MA 02138, USA;

    Harvard School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Pierce Hall, Cambridge, MA 02138, USA;

    Harvard School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Pierce Hall, Cambridge, MA 02138, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LSCF; solid oxide fuel cell; cathode; thin film; microstructure; stress;

    机译:LSCF;固体氧化物燃料电池阴极;薄膜;微观结构强调;
  • 入库时间 2022-08-18 00:25:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号