首页> 外文期刊>Journal of power sources >Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam-methane reforming
【24h】

Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam-methane reforming

机译:低温催化蒸汽-甲烷重整工艺直接生产燃料电池级氢的吸附增强反应工艺

获取原文
获取原文并翻译 | 示例
       

摘要

New experimental data are reported to demonstrate that a sorption enhanced reaction (SER) concept can be used to directly produce fuel-cell grade H_2 (<20 ppm CO) by carrying out the catalytic, endother-mic, steam-methane reforming (SMR) reaction (CH_4 + 2H_2O↔CO_2+4H_2) in presence of a CO_2 selective chemisorbent such as K_2CO_3 promoted hydrotalcite at reaction temperatures of 520 and 550℃, which are substantially lower than the conventional SMR reaction temperatures of 700-800℃. The H_2 productivity of the sorption enhanced reactor can be large, and the conversion of CH_4 to H_2 can be very high circumventing the thermodynamic limitations of the SMR reaction due to the application of the Le Chetalier's principle in the SER concept. Mathematical simulations of a cyclic two-step SER concept showed that the H_2 productivity of the process (moles of essentially pure H_2 produced per kg of catalyst-chemisorbent admixture in the reactor per cycle) is much higher at a reaction temperature of 590℃ than that at 550 or 520℃. On the other hand, the conversion of feed CH_4 to high purity H_2 product is relatively high (>99+%) at all three temperatures. The conversion is much higher than that in a conventional catalyst-alone reactor at these temperatures, and it increases only moderately (<1%) as the reaction temperature is increased from 520 to 590℃. These results are caused by complex interactions of four phenomena. They are (a) favorable thermodynamic equilibrium of the highly endothermic SMR reaction at the higher reaction temperature, (b) faster kinetics of SMR reaction at higher temperatures, (c) favorable removal of CO_2 from the reaction zone at lower temperatures, and (d) higher cyclic working capacity for CO_2 chemisorption at higher temperature.
机译:据报道,新的实验数据表明,通过进行催化,吸热式,蒸汽-甲烷重整(SMR),吸附增强反应(SER)概念可用于直接生产燃料电池级的H_2(<20 ppm CO)。 CO_2选择性化学吸附剂(如K_2CO_3)在520和550℃的反应温度下反应(CH_4 + 2H_2O = CO_2 + 4H_2)可显着低于传统的SMR反应温度700-800℃。由于Le Chetalier原理在SER概念中的应用,吸附增强反应器的H_2生产率可能很高,CH_4向H_2的转化率可能很高,从而规避了SMR反应的热力学限制。循环两步SER概念的数学模拟表明,在590℃的反应温度下,该过程的H_2生产率(每循环反应器中每千克催化剂-化学吸附剂混合物产生的基本纯H_2的摩尔数)要高得多。在550或520℃。另一方面,在所有三个温度下,进料CH_4向高纯度H_2产物的转化率都相对较高(> 99 +%)。在这些温度下,转化率比传统的单独催化剂反应器高得多,并且随着反应温度从520℃升高到590℃,转化率仅适度增加(<1%)。这些结果是由四种现象的复杂相互作用引起的。它们是(a)在较高的反应温度下高吸热SMR反应的有利的热力学平衡;(b)在较高的温度下SMR反应的动力学更快;(c)在较低的温度下从反应区中有利的CO_2去除;和(d )在较高温度下具有较高的CO_2化学吸附循环工作能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号