首页> 外文期刊>Journal of power sources >Computational modeling of a direct propane fuel cell
【24h】

Computational modeling of a direct propane fuel cell

机译:直接丙烷燃料电池的计算模型

获取原文
获取原文并翻译 | 示例
       

摘要

The first two dimensional mathematical model of a complete direct propane fuel cell (DPFC) is described. The governing equations were solved using FreeFem software that uses finite element methods. Robin boundary conditions were used to couple the anode, membrane, and cathode sub-domains successfully. The model showed that a polytetrafluoroethylene membrane having its pores filled with zirconium phosphate (ZrP-FTFE), in a DPFC at 150 C performed much the same as other electrolytes; Nafion, aqueous H_3 PO_4, and H_2SO_4 doped polybenzimidazole, when they were used in DPFCs. One advantage of a ZrP-PTFE at 150℃ is that it operates without liquid phase water. As a result corrosion will be much less severe and it may be possible for non-precious metal catalysts to be used. Computational results showed that the thickness of the catalyst layer could be increased sufficiently so that the pressure drop between the reactant and product channels of the interdigitated flow fields is small. By increasing the width of the land and therefore the reactant's contact time with the catalyst it was possible to approach 100% propane conversion. Therefore fuel cell operation with a minimum concentration of propane in the product stream should be possible. Finally computations of the electrical potential in the ZrP phase, the electron flux in the Pt/C phase, and the overpotential in both the anode and cathode catalyst layers showed that serious errors in the model occurred because proton diffusion, caused by the proton concentration gradient, was neglected in the equation for the conservation of protons.
机译:描述了完整的直接丙烷燃料电池(DPFC)的前二维数学模型。使用FreeFem软件使用有限元方法求解了控制方程。 Robin边界条件用于成功耦合阳极,膜和阴极子域。该模型表明,在150℃的DPFC中,其孔充满了磷酸锆(ZrP-FTFE)的聚四氟乙烯膜的性能与其他电解质基本相同。当将Nafion,H_3 PO_4水溶液和H_2SO_4掺杂的聚苯并咪唑用于DPFC中时。 ZrP-PTFE在150℃时的一个优点是,它无需液相水即可运行。结果,腐蚀将不会严重得多,并且有可能使用非贵金属催化剂。计算结果表明,可以充分增加催化剂层的厚度,从而使相互交叉的流场的反应物和产物通道之间的压降较小。通过增加平台的宽度并因此增加反应物与催化剂的接触时间,有可能达到100%的丙烷转化率。因此,应该有可能在产物流中丙烷浓度最低的情况下运行燃料电池。最后对ZrP相中的电势,Pt / C相中的电子通量以及阳极和阴极催化剂层中的超电势的计算表明,由于质子浓度梯度引起的质子扩散,模型中出现了严重误差。 ,在质子守恒方程中被忽略。

著录项

  • 来源
    《Journal of power sources》 |2011年第6期|p.3186-3194|共9页
  • 作者单位

    Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, KIN 6N5 Canada,Center for Catalysis Research and Innovation, University of Ottawa, 30 Marie-Curie St., Ottawa, KIN 6N5 Canada;

    Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario, KIN 6N5 Canada;

    Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, KIN 6N5 Canada,Center for Catalysis Research and Innovation, University of Ottawa, 30 Marie-Curie St., Ottawa, KIN 6N5 Canada,EnPross Incorporated, 147 Banning Road, Ottawa, K2L 1C5 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    pem fuel cell; direct propane fuel cell; mathematical modeling; interdigitated flow field;

    机译:Pem燃料电池;直接丙烷燃料电池数学建模;叉指流场;
  • 入库时间 2022-08-18 00:24:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号