首页> 外文期刊>Journal of power sources >High performance Bi-layered electrolytes via atomic layer deposition for solid oxide fuel cells
【24h】

High performance Bi-layered electrolytes via atomic layer deposition for solid oxide fuel cells

机译:通过原子层沉积的高性能双层电解质,用于固体氧化物燃料电池

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This study investigates the functionality of bi-layered electrolytes in intermediate temperature solid oxide fuel cells. A thin yttria-stabilized zirconia (YSZ) layer is expected to protect the underlying gadolinia doped ceria (GDC) electrolyte from being chemically reduced and significantly improve cell stability and durability. Although a thinner YSZ layer is preferable to minimize ohmic loss, there are limitations as to how thin the YSZ film can be and still serves as a valid protection layer. The limitation is partially attributed to the inter-diffusion and significant morphological changes during the high temperature sintering processes. In this study, a stable operation was demonstrated for extended duration (>80 h) with only a 28 nm YSZ layer (corresponding to a YSZ/GDC thickness ratio of 6.5 × 10~(-5)) when limitations in both fabrication (<~800 ℃) and operating conditions (<~600 ℃, dry H_2) were imposed. Furthermore, the functionality of a protection layer with a given thickness was found to strongly depend on the method of depositing the protective layer. Protective layers deposited by atomic layer deposition (ALD) can be much thinner than those prepared by physical vapor deposition; the YSZ/GDC thickness ratio for a stable operation approached close to a theoretical value when the ALD was used.
机译:这项研究调查了中温固体氧化物燃料电池中双层电解质的功能。预期氧化钇稳定的氧化锆(YSZ)薄层可以保护下面的氧化g掺杂二氧化铈(GDC)电解质免于化学还原并显着提高电池的稳定性和耐久性。尽管优选较薄的YSZ层以使欧姆损耗最小化,但是对于YSZ膜可以薄到仍可以用作有效保护层的厚度存在限制。该限制部分归因于高温烧结过程中的相互扩散和显着的形态变化。在这项研究中,当两种制造方法均受到限制时,只有28 nm的YSZ层(对应于6.5×10〜(-5)的YSZ / GDC厚度比)可以在更长的持续时间(> 80小时)内实现稳定的操作。 〜800℃)和操作条件(<〜600℃,干燥的H_2)。此外,发现具有给定厚度的保护层的功能性在很大程度上取决于沉积保护层的方法。通过原子层沉积(ALD)沉积的保护层比通过物理气相沉积制备的保护层要薄得多。使用ALD时,稳定运行的YSZ / GDC厚度比接近理论值。

著录项

  • 来源
    《Journal of power sources》 |2014年第1期|114-122|共9页
  • 作者单位

    School of Engineering, University of California, Merced, 5200 N. Lake Rd., Merced, CA 95343, USA;

    School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Republic of Korea;

    Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA;

    High Temperature Energy Materials Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea;

    High Temperature Energy Materials Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea;

    High Temperature Energy Materials Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea;

    Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA;

    School of Engineering, University of California, Merced, 5200 N. Lake Rd., Merced, CA 95343, USA;

    School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    solid oxide fuel cell; Atomic layer deposition; YSZ/GDC bi-layer; Sintering temperature; Ceria reduction;

    机译:固体氧化物燃料电池原子层沉积;YSZ / GDC双层;烧结温度减少二氧化铈;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号