首页> 外文期刊>Journal of power sources >Parylene C-coated PDMS-based microfluidic microbial fuel cells with low oxygen permeability
【24h】

Parylene C-coated PDMS-based microfluidic microbial fuel cells with low oxygen permeability

机译:低氧渗透率的聚对二甲苯C涂层的PDMS基微流微生物燃料电池

获取原文
获取原文并翻译 | 示例
           

摘要

Oxygen invasion is the main bottleneck in developing microscale microbial fuel cells as an efficient power source. This study reports for the first time the development of a polydimethylsiloxane-based co-laminar microbial fuel cell utilizing a parylene C coating to lower the oxygen permeability. In addition, the surface of the Au electrode is micropillar-structured to reduce the internal resistance of the microbial fuel cell. The performance of this novel microfluidic microbial fuel cell is investigated under various flow rates of electrolytes. The shear stress simulation shows that shear stress, induced by increasing flow rates, strongly impacts the biofilm electrode performance. To the best of our knowledge, the measured peak power density (71.89 +/- 5.13 mu W cm(-2)) and maximum current density (182.0 +/- 4.82 mu A cm(-2)) with the structured electrode are higher than those of any other reported polydimethylsiloxane-based microscale microbial fuel cells. The proposed microbial fuel cell appears to be a promising power supply that can be easily integrated with portable or implantable biomedical devices.
机译:氧的入侵是发展微型微生物燃料电池作为有效动力来源的主要瓶颈。这项研究首次报道了利用聚对二甲苯C涂层降低氧气渗透性的聚二甲基硅氧烷基共层微生物燃料电池的开发。另外,Au电极的表面是微柱结构的,以减小微生物燃料电池的内部电阻。在电解质的各种流速下研究了这种新型微流微生物燃料电池的性能。剪切应力模拟表明,流速增加引起的剪切应力严重影响生物膜电极的性能。据我们所知,结构化电极的峰值功率密度(71.89 +/- 5.13μW cm(-2))和最大电流密度(182.0 +/- 4.82μA cm(-2))更高比任何其他已报道的基于聚二甲基硅氧烷的微生物微生物燃料电池都高。拟议的微生物燃料电池似乎是一种有前途的电源,可以轻松地与便携式或可植入生物医学设备集成在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号