首页> 外文期刊>Journal of power sources >Boosted electrochemical performance of Li_2ZnTi_3O_8 enabled by ion-conductive Li_2ZrO_3 concomitant with superficial Zr-doping
【24h】

Boosted electrochemical performance of Li_2ZnTi_3O_8 enabled by ion-conductive Li_2ZrO_3 concomitant with superficial Zr-doping

机译:离子传导性Li_2ZrO_3伴随表面Zr掺杂提高了Li_2ZnTi_3O_8的电化学性能

获取原文
获取原文并翻译 | 示例
       

摘要

The poor electronic and ionic conductivities restrict the application of Li2ZnTi3O8 (LZTO) especially at high current rates. In this work, LZTO is modified with (LiZrO3)-Zr-2 (LZO) by simply reacting LiNO3 and Zr(NO3)(4).5H(2)O on the surface of the as-prepared LZTO particles to improve the electrochemical performance. The modified LZTO with a LZO/LZTO mass ratio of 0.008 and sintered at 750 degrees C for 5 h exhibits greatly enhanced rate capabilities (acquiring reversible capacities of 196.1, 175.9, 154.9, 135.1, 109.8, and 223.6 mAh g(-1) at 100, 200, 400, 800, 1600, and 100 mA g(-1), respectively), and outstanding long-term cyclability (retaining a capacity of 199.2 mAh g(-1) after 600 cycles at 500 mA g(-1)). On the basis of detailed characterizations on structure and composition as well as DFT calculations, the dispersed LZO nanoparticles and LZO coating bridge the LZTO particles to facilitate Li+ migration among the LZTO particles, while the superficial Zr4+ doping in LZTO promotes electron transfer, resulting in the simultaneously ameliorated electronic and ionic conductivities of LZTO, as well as alleviated polarization.
机译:较差的电子和离子电导率限制了Li2ZnTi3O8(LZTO)的应用,尤其是在高电流速率下。在这项工作中,通过简单地使LiNO3和Zr(NO3)(4).5H(2)O在所制备的LZTO颗粒表面上反应,用(LiZrO3)-Zr-2(LZO)改性了LZTO。性能。 LZO / LZTO质量比为0.008且在750摄氏度下烧结5 h的改性LZTO表现出大大提高的倍率能力(在20℃时可逆容量为196.1、175.9、154.9、135.1、109.8和223.6 mAh g(-1)分别为100、200、400、800、1600和100 mA g(-1)),以及出色的长期可循环性(在500 mA g(-1)600次循环后仍保持199.2 mAh g(-1)的容量))。根据对结构和组成的详细表征以及DFT计算,分散的LZO纳米颗粒和LZO涂层桥接LZTO颗粒以促进Li +在LZTO颗粒之间的迁移,而LZTO中的表面Zr4 +掺杂促进电子转移,从而导致同时改善了LZTO的电子和离子电导率,并减轻了极化。

著录项

  • 来源
    《Journal of power sources》 |2018年第1期|270-277|共8页
  • 作者单位

    Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China;

    Univ Wisconsin Milwaukee, Mat Sci & Engn Dept, Milwaukee, WI 53211 USA;

    Univ Wisconsin Milwaukee, Mat Sci & Engn Dept, Milwaukee, WI 53211 USA;

    Univ Wisconsin Milwaukee, Mat Sci & Engn Dept, Milwaukee, WI 53211 USA;

    Shandong Univ Sci & Technol, Sch Mat Sci & Engn, Qingdao 266590, Peoples R China;

    Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China;

    Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China;

    Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China;

    Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China;

    Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Modification; Li2ZrO3; Superficial doping; Li2ZnTi3O8; DFT calculations;

    机译:改性;Li2ZrO3;表面掺杂;Li2ZnTi3O8;DFT计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号