...
首页> 外文期刊>Journal of power sources >In-situ probing phase evolution and electrochemical mechanism of ZnMn_2O_4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries
【24h】

In-situ probing phase evolution and electrochemical mechanism of ZnMn_2O_4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries

机译:高性能水性Zn离子电池中锚固在多孔碳多面体上的ZnMn_2O_4纳米粒子的原位探测相演化和电化学机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Inspired by the successful application of spinel LiMn2O4 cathode in Li-ion batteries, analogous spinel ZnMn2O4 (ZMO) is regarded as a promising cathode for rechargeable aqueous Zn-ion batteries (ZIBs). Nevertheless, clear Zn2+ storage mechanism and phase transition of spinel ZMO is still scarce. Herein, in the first time, we report an in-situ Raman study in dynamically probing the phase and structure evolution of a spinel ZMO-based cathode during charging-discharging process, in which spinel ZMO nanoparticles are anchored on porous carbon poly-hedrons (PCPs). By in-situ investigation, it is demonstrated that the electrochemical mechanism can be attributed to the highly reversible phase transformation between spinel ZMO and lambda-type MnO2 upon Zn2+ insertion/extraction, which is driven by stepwise oxidation and reduction reactions of Mn3+/Mn4+ along with efficient charge carriers. Furthermore, the resultant ZMO@PCPs composite as cathode delivers a large reversible capacity of 125.6 mAh g(-1) at a high current density of 1 A g(-1) after 2000 cycles, representing superior long-term cyclic stability (capacity retention of 90.3%) and remarkable rate capability in aqueous ZIBs. As a proof of concept, high-performance flexible aqueous ZIBs are fabricated and represent stable electrochemical performance under various deformation states, indicating their potential applications in portable and wearable electronics.
机译:受到尖晶石LiMn2O4阴极在锂离子电池中成功应用的启发,类似的尖晶石ZnMn2O4(ZMO)被认为是可再充电的水性锌离子电池(ZIBs)的有希望的阴极。然而,仍然缺乏清晰的Zn2 +储存机理和尖晶石ZMO的相变。在这里,我们首次报道了在拉曼研究中动态探测尖晶石ZMO基阴极在充放电过程中的相变和结构演化的过程,其中尖晶石ZMO纳米粒子锚固在多孔碳多面体上( PCPs)。通过原位研究表明,电化学机理可以归因于尖晶石ZMO和λ型MnO2在Zn2 +插入/萃取时的高度可逆相变,这是由Mn3 + / Mn4 +的逐步氧化和还原反应驱动的。与高效的电荷载体。此外,所得的ZMO @ PCPs复合材料作为阴极在2000次循环后以1 A g(-1)的高电流密度提供了125.6 mAh g(-1)的大可逆容量,代表了出色的长期循环稳定性(容量保持率)含量为90.3%),并且在水性ZIB中具有出色的速率能力。作为概念的证明,高性能柔性水性ZIB被制造出来并在各种变形状态下表现出稳定的电化学性能,表明它们在便携式和可穿戴电子产品中的潜在应用。

著录项

  • 来源
    《Journal of power sources》 |2020年第15期|227826.1-227826.8|共8页
  • 作者

  • 作者单位

    Jiangsu Univ Sci & Technol Sch Mat Sci & Engn Zhenjiang 212003 Jiangsu Peoples R China|Shanghai Jiao Tong Univ Sch Mat Sci & Engn State Key Lab Metall Matrix Composite Mat Shanghai 200240 Peoples R China;

    Jiangsu Univ Sci & Technol Sch Mat Sci & Engn Zhenjiang 212003 Jiangsu Peoples R China;

    Shanghai Jiao Tong Univ Sch Mat Sci & Engn State Key Lab Metall Matrix Composite Mat Shanghai 200240 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    In-situ Raman; Electrochemical mechanism; Phase evolution; Spinel cathode; Aqueous batteries;

    机译:原位拉曼;电化学机理相位演化;尖晶石阴极;水电池;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号