...
首页> 外文期刊>Journal of power sources >Assignment of energy loss contributions in redox flow batteries using exergy destruction analysis
【24h】

Assignment of energy loss contributions in redox flow batteries using exergy destruction analysis

机译:使用(火用)破坏分析分配氧化还原液流电池的能量损失贡献。

获取原文
获取原文并翻译 | 示例
           

摘要

Various microscopic processes are responsible for the inefficiencies with which redox flow batteries (RFBs) operate. We introduce theory presently to enable the systematic analysis of energy losses in RFBs using exergy destruction rates derived from irreversible thermodynamics. We apply this analysis to RFBs for the first time by performing simulations with a transient, 2D model using a homogenized Poisson-Nernst-Planck formulation including multicomponent hydrodynamic dispersion, Dorman exclusion in ion exchange membranes, and Marcus-Hush-Chidsey kinetics. In the limit of low Wagner number, we map charge capacity utilization and cell polarization in the space of pore-scale Darnkohler number (a non-dimensional parameter for characteristic pore scale mass transfer resistance) and salt Damkohler number (a non-dimensional parameter for characteristic ohmic polarization) by varying the applied current density and electrode fiber diameter. Exergy destruction rates are analyzed from (1) pore-scale mass transfer, (2) reaction kinetics, (3) irreversible tank mixing, (4) bulk species transport, and (5) electronic conduction. For high coulombic efficiencies the sum of these exergy destruction contributions balances with the energy lost during a given cycle. This method of energy loss assignment to specific mechanisms at specific instants in time and locations in space provides guidance for the development of energy-efficient, high-rate RFBs in the future.
机译:各种微观过程是造成氧化还原液流电池(RFB)运行效率低下的原因。我们目前介绍理论,以利用不可逆热力学得出的本能破坏率对RFB中的能量损失进行系统分析。我们通过使用均质化的Poisson-Nernst-Planck公式(包括多组分流体动力学分散,离子交换膜中的Dorman排斥和Marcus-Hush-Chidsey动力学)的均质化Poisson-Nernst-Planck公式执行仿真,首次将这种分析应用于RFB。在低Wagner数的限制下,我们在孔隙尺度Darnkohler数(特征性孔隙尺度传质阻力的无量纲参数)和盐Damkohler数(孔隙度的无量纲参数)的空间中映射电荷容量利用率和细胞极化通过改变所施加的电流密度和电极纤维直径来实现特性极化)。从(1)孔尺度传质,(2)反应动力学,(3)不可逆罐混合,(4)大量物质传输和(5)电子传导来分析火用破坏率。对于高库仑效率,这些火用破坏贡献的总和与给定周期内损失的能量保持平衡。这种将能量损失分配给特定机制的特定时间和空间位置的特定方法,为将来开发节能高效的RFB提供了指导。

著录项

  • 来源
    《Journal of power sources》 |2020年第31期|227371.1-227371.13|共13页
  • 作者单位

    Univ Illinois Dept Mech Sci & Engn Urbana IL 61801 USA|Univ Illinois Computat Sci & Engn Program Urbana IL 61801 USA;

    Univ Illinois Dept Mech Sci & Engn Urbana IL 61801 USA|Univ Illinois Dept Mat Sci & Engn Urbana IL 61801 USA|Univ Illinois Computat Sci & Engn Program Urbana IL 61801 USA|Univ Illinois Beckman Inst Adv Sci & Technol Urbana IL 61801 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Poisson-Nernst-Planck; Polarization; Exergy destruction; Redox flow battery; Simulation;

    机译:泊松内斯特普朗克;偏振;火用破坏;氧化还原液流电池;模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号