首页> 外文期刊>Journal of Physical Oceanography >Wind- and Wave-Driven Reynolds Stress and Velocity Shear in the Upper Ocean for Idealized Misaligned Wind-Wave Conditions
【24h】

Wind- and Wave-Driven Reynolds Stress and Velocity Shear in the Upper Ocean for Idealized Misaligned Wind-Wave Conditions

机译:上海的风波和波浪驱动的雷诺应力和速度剪切,以获得理想化未对准的风波条件

获取原文
获取原文并翻译 | 示例
       

摘要

This study investigates the dynamics of velocity shear and Reynolds stress in the ocean surface boundary layer for idealized misaligned wind and wave fields using a large-eddy simulation (LES) model based on the Craik-Leibovich equations, which captures Langmuir turbulence (LT). To focus on the role of LT, the LES experiments omit the Coriolis force, which obscures a stress-current-relation analysis. Furthermore, a vertically uniform body force is imposed so that the volume-averaged Eulerian flow does not accelerate but is steady. All simulations are first spun-up without wind-wave misalignment to reach a fully developed stationary turbulent state. Then, a crosswind Stokes drift profile is abruptly imposed, which drives crosswind stresses and associated crosswind currents without generating volume-averaged crosswind currents. The flow evolves to a new stationary state, in which the crosswind Reynolds stress vanishes while the crosswind Eulerian shear and Stokes drift shear are still present, yielding a misalignment between Reynolds stress and Lagrangian shear (sum of Eulerian current and Stokes drift). A Reynolds stress budgets analysis reveals a balance between stress production and velocity-pressure gradient terms (VPG) that encloses crosswind Eulerian shear, demonstrating a complex relation between shear and stress. In addition, the misalignment between Reynolds stress and Eulerian shear generates a horizontal turbulent momentum flux (due to correlations of along-wind and crosswind turbulent velocities) that can be important in producing Reynolds stress (due to correlations of horizontal and vertical turbulent velocities). Thus, details of the Reynolds stress production by Eulerian and Stokes drift shear may be critical for driving upper-ocean currents and for accurate turbulence parameterizations in misaligned wind-wave conditions.
机译:本研究研究了使用基于Craik-Leibovich方程的大涡模拟(LES)模型的理想化未对准风和波场的海面边界层中速度剪切和雷诺应力的动态,其捕获Langmuir湍流(LT)。为了专注于LT的作用,LES实验揭示了科里奥利力,这掩盖了应力 - 关系分析。此外,施加垂直均匀的体力,使得体积平均的欧拉流量不会加速而是稳定的。所有模拟都是第一次旋转,没有风波未对准,以达到完全发育的固定动荡状态。然后,突然施加横顺斯托克斯漂移轮廓,其驱动交叉风应力和相关的横向电流而不产生体积平均的横向电流。该流动的发展成为一种新的静止状态,其中横向雷诺应力仍然存在,而横向欧拉剪切和斯托克斯漂移剪切仍然存在,从而产生雷诺应力和拉格朗日剪切之间的错位(欧拉电流和斯托克斯漂移的总和)。 Reynolds Regress预算分析揭示了封闭穿透欧拉剪切的应力产生和速度 - 压力梯度术语(VPG)之间的平衡,展示了剪切和应力之间的复杂关系。此外,雷诺应力和欧拉剪切之间的未对准产生水平湍流动量通量(由于沿着风和横向湍流速度的相关性),这在产生雷诺应力方面可能是重要的(由于水平和垂直湍流速度的相关性)。因此,欧拉和Stokes漂移剪切的雷诺应力产生的细节对于在未对准的风波条件下驾驶上海电流和准确的湍流参数来对驾驶巨大的湍流参数来关键。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号