首页> 外文期刊>Journal of Physical Oceanography >The Response of Quasigeostrophic Oceanic Vortices to Tropical Cyclone Forcing
【24h】

The Response of Quasigeostrophic Oceanic Vortices to Tropical Cyclone Forcing

机译:准地转海洋涡对热带气旋强迫的响应

获取原文
获取原文并翻译 | 示例
           

摘要

The response of quasigeostrophic (QG) oceanic vortices to tropical cyclone (TC) forcing is investigated using an isopycnic ocean model. Idealized oceanic currents and wind fields derived from observational data acquired during Hurricane Katrina are used to initialize this model. It is found that the upwelling response is a function of the curl of wind-driven acceleration of oceanic mixed layer (OML) currents rather than a function of the wind stress curl. Upwelling (downwelling) regimes prevail under the TC's eye as it translates over cyclonic (anticyclonic) QG vortices. OML cooling of ~1℃ occurs over anticyclones because of the combined effects of downwelling, instantaneous turbulent entrainment over the deep warm water column (weak stratification), and vertical dispersion of near-inertial energy. By contrast, OML cooling of ~4℃ occurs over cyclones due to the combined effects of upwelling, instantaneous turbulent entrainment over regions of tight vertical thermal gradients (strong stratification), and trapping of near-inertial energy that enhances vertical shear and mixing at the OML base. The rotational rate of the QG vortex affects the dispersion of near-inertial waves. As rotation is increased in both cyclones and anticyclones, the near-inertial response is shifted toward more energetic frequencies that enhance vertical shear and mixing. TC-induced temperature anomalies in QG vortices propagate westward with time, deforming the cold wake. Therefore, to accurately simulate the impact of TC-induced OML cooling and feedback mechanisms on storm intensity, coupled ocean-atmosphere TC models must resolve geostrophic ocean eddy location as well as thermal, density, and velocity structures.
机译:使用等渗海洋模型研究了准热带涡(QG)对热带气旋(TC)强迫的响应。从卡特里娜飓风期间获得的观测数据得出的理想洋流和风场用于初始化该模型。发现上升响应是海洋混合层(OML)气流的风驱动加速的卷曲的函数,而不是风应力卷曲的函数。在TC眼中,上升流(下流)机制占主导地位,因为它在气旋(反气旋)QG涡旋上转换。由于下降流,深温水柱上的瞬时湍流夹带(弱分层)和近惯性能量的垂直分散,在反气旋中发生了约1℃的OML冷却。相比之下,由于上升流,瞬时湍流夹带在垂直的垂直热梯度(强分层)区域以及近惯性能量的捕获(这会增强垂直切变和混合)的综合作用,整个旋风中的OML冷却达到〜4℃。 OML基础。 QG涡旋的旋转速率会影响近惯性波的色散。随着旋风分离器和反旋风分离器中旋转的增加,近惯性响应朝着更强的频率移动,从而增强了垂直剪切和混合。 TC引起的QG涡流温度异常随时间向西传播,使冷尾变形。因此,为了准确模拟TC诱发的OML冷却和反馈机制对风暴强度的影响,耦合的海洋-大气TC模型必须解析地转海洋涡流的位置以及热,密度和速度结构。

著录项

  • 来源
    《Journal of Physical Oceanography》 |2011年第10期|p.1965-1985|共21页
  • 作者单位

    Division of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida;

    Division of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida;

    NOAA/AOML/PhOD, Miami, Florida;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号