首页> 外文期刊>Journal of Physical Oceanography >Diagnosing Lateral Mixing in the Upper Ocean with Virtual Tracers: Spatial and Temporal Resolution Dependence
【24h】

Diagnosing Lateral Mixing in the Upper Ocean with Virtual Tracers: Spatial and Temporal Resolution Dependence

机译:使用虚拟示踪剂诊断上层海洋的横向混合:时空分辨率依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

Several recent studies diagnose lateral stirring and mixing in the upper ocean using altimetry-derived velocity fields to advect "virtual" particles and fields offline. However, the limited spatiotemporal resolution of altimetric maps leads to errors in the inferred diagnostics, because unresolved scales are necessarily imperfectly modeled. The authors examine a range of tracer diagnostics in two models of baroclinic turbulence: the standard Phillips model, in which dispersion is controlled by large-scale eddies, and the Eady model, where dispersion is determined by local scales of motion. These models serve as a useful best- and worst-case comparison and a valuable test of the resolution sensitivity of tracer diagnostics. The effect of unresolved scales is studied by advecting tracers using model velocity fields subsampled in space and time and comparing the derived tracer diagnostics with their "true" value obtained from the fully resolved flow. The authors find that eddy diffusivity and absolute dispersion, which are governed by large-scale dynamics, are insensitive to spatial sampling error in either flow. Measures that depend strongly on small scales, such as relative dispersion and finite-time Lyapunov exponents, are highly sensitive to spatial sampling in the Eady model. Temporal sampling error is found to have a more complicated behavior because of the onset of particle overshoot leading to scrambling of Lagrangian diagnostics. This leads to a potential restriction on the utility of raw altimetry maps for studying mixing in the upper ocean. The authors conclude that offline diagnostics of mixing in ocean flows with an energized submesoscale should be viewed with some caution.
机译:近期的一些研究使用高程派生的速度场诊断“虚拟”粒子和场离线,从而诊断了上层海洋的横向搅拌和混合。但是,由于未解析的比例尺未必完美地建模,因此高度有限的时空分辨率会导致推断的诊断结果出现错误。作者检查了两种斜压湍流模型中的示踪剂诊断范围:标准的Phillips模型(由大型涡旋控制弥散)和Eady模型(由局部运动尺度确定弥散)。这些模型可作为有用的最佳情况和最坏情况的比较,以及对示踪剂诊断程序的分辨率敏感性的有价值的测试。通过使用在空间和时间中二次采样的模型速度场对示踪剂进行平流,并将派生的示踪剂诊断结果与从完全解析的流量中获得的“真实”值进行比较,来研究未解决尺度的影响。作者发现,由大范围动力学控制的涡流扩散率和绝对色散对两种流动中的空间采样误差都不敏感。强烈依赖小尺度的度量(例如相对色散和有限时间Lyapunov指数)对Eady模型中的空间采样高度敏感。由于粒子超调的发生导致拉格朗日诊断的混乱,因此发现时间采样误差的行为更为复杂。这导致对原始高程图的用途进行潜在的限制,以研究上层海洋的混合。作者得出的结论是,应谨慎考虑离线进行的海流与能量亚中尺度混合的诊断。

著录项

  • 来源
    《Journal of Physical Oceanography》 |2011年第8期|p.1512-1534|共23页
  • 作者单位

    Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University,New York, New York;

    Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University,New York, New York;

    Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号