首页> 外文期刊>Journal of Physical Oceanography >Midshelf to Surfzone Coupled ROMS-SWAN Model Data Comparison of Waves, Currents, and Temperature: Diagnosis of Subtidal Forcings and Response
【24h】

Midshelf to Surfzone Coupled ROMS-SWAN Model Data Comparison of Waves, Currents, and Temperature: Diagnosis of Subtidal Forcings and Response

机译:中架到海浪区域的ROMS-SWAN耦合波,电流和温度数据比较:潮下强迫和响应的诊断

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A coupled wave and circulation model that includes tide, wind, buoyancy, and wave processes is necessary to investigate tracer exchange in the shelf region. Here, a coupled Regional Ocean Model System (ROMS)-Simulating Waves Nearshore (SWAN) model, resolving midshelf to the surfzone region of the San Pedro Bay, California, is compared to observations from the 2006 Huntington Beach experiment. Waves are well modeled, and surfzone cross- and alongshore velocities are reasonably well modeled. Modeled and observed rotary velocity spectra compare well in subtidal and tidal bands, and temperature spectra compare well in the subtidal band. Observed and modeled mid- and inner-shelf subtidal velocity ellipses and temperature variability determined from the first vertical complex EOF (cEOF) mode have similar vertical structure. Although the modeled subtidal velocity vertical shear and stratification are weaker than observed, the ratio of stratification to shear is similar, suggesting model vertical mixing is consistent with observations. On fortnightly and longer time scales, the surface heat flux and advective heat flux divergence largely balance on the inner shelf and surfzone. The surfzone and inner-shelf alongshore currents separated by 220 m are unrelated. Both modeled and observed subtidal alongshelf current and temperature are cross-shelf coherent seaward of the surfzone. Wind forcing explains 50% of the observed and modeled inner-shelf alongshore current variability. The observed and modeled inner-shelf alongshelf nonuniformities in depth-averaged alongshore velocities are similar. Inferred, inner-shelf, wave-induced, cross-shore exchange is more important than on the U.S. East Coast. Overall, the coupled ROMS-SWAN model represents well the waves and subtidal circulation dynamics from the midshelf to the surfzone.
机译:包括潮汐,风,浮力和波浪过程的耦合波浪和循环模型对于研究架子区域的示踪剂交换是必要的。在这里,将耦合的区域海洋模型系统(ROMS)-近海模拟波浪(SWAN)模型与加利福尼亚圣佩德罗湾海域的中陆架解析,并与2006年亨廷顿海滩实验的观测结果进行了比较。波浪被很好地建模,海浪跨岸和沿海速度被合理地建模。建模和观察到的旋转速度谱在潮下带和潮带中比较好,而温度谱在潮下带中比较好。从第一垂直复数EOF(cEOF)模式确定的观测到的和建模的中上层和下层内潮汐速度椭圆和温度变化具有相似的垂直结构。尽管建模的潮下速度垂直剪切和分层比观测到的要弱,但是分层与剪切的比率是相似的,这表明模型的垂直混合与观测值是一致的。在每两周和更长的时间尺度上,内陆架和海浪区的表面热通量和对流热通量差异很大。相距220 m的海浪区和内陆近海流无关。模拟和观测到的潮下带沿潮流和温度都与该海区的跨层相干海相一致。风强迫解释了观测和建模的内架沿岸电流变化的50%。深度平均沿岸速度中观察到的和建模的内部层架沿层架不均匀性相似。推断的,由内层,波浪引起的跨岸交换比在美国东海岸更重要。总体而言,耦合的ROMS-SWAN模型很好地表示了从中陆到海浪的波浪和潮汐环流动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号