...
首页> 外文期刊>Journal of Physical Oceanography >Effects of Wave-Current Interactions on Suspended-Sediment Dynamics during Strong Wave Events in Jiaozhou Bay, Qingdao, China
【24h】

Effects of Wave-Current Interactions on Suspended-Sediment Dynamics during Strong Wave Events in Jiaozhou Bay, Qingdao, China

机译:青岛胶州湾强波事件中波流相互作用对悬浮泥沙动力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Wave-current interactions are crucial to suspended-sediment dynamics, but the roles of the associated physical mechanisms, the depth-dependent wave radiation stress, Stokes drift velocity, vertical transfer of wave-generated pressure transfer to the mean momentum equation (form drag), wave dissipation as a source term in the turbulence kinetic energy equation, and mean current advection and refraction of wave energy, have not yet been fully understood. Therefore, in this study, a computationally fast wave model developed by Mellor et al., a Finite Volume Coastal Ocean Model (FVCOM) hydrodynamics model, and the sediment model developed by the University of New South Wales are two-way coupled to study the effect of each wave-current interaction mechanism on suspended-sediment dynamics near shore during strong wave events in a tidally dominated and semiclosed bay, Jiaozhou Bay, as a case study. Comparison of Geostationary Ocean Color Imager data and model results demonstrates that the inclusion of just the combined wave-current bottom stress in the model, as done in most previous studies, is clearly far from adequate to model accurately the suspended-sediment dynamics. The effect of each mechanism in the wave-current coupled processes is also investigated separately through numerical simulations. It is found that, even though the combined wave-current bottom stress has the largest effect, the combined effect of the other wave-current interactions, mean current advection and refraction of wave energy, wave radiation stress, and form drag (from largest to smallest effect), are comparable. These mechanisms can cause significant variation in the current velocities, vertical mixing, and even the bottom stress, and should obviously be paid more attention when modeling suspended-sediment dynamics during strong wave events.
机译:波流相互作用对悬浮泥沙动力学至关重要,但是相关物理机制的作用,与深度有关的波辐射应力,斯托克斯漂移速度,波生压力的垂直传递到平均动量方程(形式阻力)在湍流动能方程中,作为耗散项的波耗散,以及波能的平均电流平流和折射,还没有被完全理解。因此,在这项研究中,由Mellor等人开发的计算快速波浪模型,有限体积沿海海洋模型(FVCOM)水动力模型和新南威尔士大学开发的沉积物模型是双向耦合的,用于研究胶州湾以潮汐为主和半封闭的海湾中,各种波浪流相互作用机制对强波浪事件期间海岸附近悬浮泥沙动力学的影响为例。对地静止海洋彩色成像仪数据和模型结果的比较表明,像大多数以前的研究一样,仅在模型中包括组合的波流底部应力显然不足以准确地对悬浮泥沙动力学进行建模。还通过数值模拟分别研究了每种机制在波流耦合过程中的作用。结果发现,即使波浪-海底联合应力的影响最大,其他波浪-电流相互作用,波浪能量的平均电流对流和折射,波浪辐射应力和形变阻力(从最大效果最小),具有可比性。这些机制可能会导致当前速度,垂直混合甚至底部应力发生显着变化,因此在对强波浪事件中的悬浮泥沙动力学建模时,显然应引起更多关注。

著录项

  • 来源
    《Journal of Physical Oceanography》 |2018年第5期|1053-1078|共26页
  • 作者单位

    Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China;

    Univ New South Wales Canberra, Sinoaustralian Res Ctr Coastal Management, Canberra, ACT, Australia;

    Qingdao Natl Lab Marine Sci & Technol, Qingdao, Peoples R China;

    Qingdao Natl Lab Marine Sci & Technol, Qingdao, Peoples R China;

    Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China;

    Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China;

    Qingdao Natl Lab Marine Sci & Technol, Qingdao, Peoples R China;

    State Ocean Adm, North China Sea Marine Forecasting Ctr, Qingdao, Peoples R China;

    Natl Environm Forecast Ctr, Beijing, Peoples R China;

    Meteorol Bur Qingdao, Qingdao, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号