...
首页> 外文期刊>Journal of Petrology >Petrogenesis of Mafic Garnet Granulite in the Lower Crust of the Kohistan Paleo-arc Complex (Northern Pakistan): Implications for Intra-crustal Differentiation of Island Arcs and Generation of Continental Crust
【24h】

Petrogenesis of Mafic Garnet Granulite in the Lower Crust of the Kohistan Paleo-arc Complex (Northern Pakistan): Implications for Intra-crustal Differentiation of Island Arcs and Generation of Continental Crust

机译:Kohistan古弧复合体(巴基斯坦北部)下部地壳中的镁铁石榴石花岗石成因:对岛弧壳内分化和陆壳生成的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report the results of a geochemical study of the Jijal and Sarangar complexes, which constitute the lower crust of the Mesozoic Kohistan paleo-island arc (Northern Pakistan). The Jijal complex is composed of basal peridotites topped by a gabbroic section made up of mafic garnet granulite with minor lenses of garnet hornblendite and granite, grading up-section to hornblende gabbronorite. The Sarangar complex is composed of metagabbro. The Sarangar gabbro and Jijal hornblende gabbronorite have melt-like, light rare earth element (LREE)-enriched REE patterns similar to those of island arc basalts. Together with the Jijal garnet granulite, they define negative covariations of LaN, YbN and (La/Sm)N with Eu* [Eu* = 2 × EuN/(SmN + GdN), where N indicates chondrite normalized], and positive covariations of (Yb/Gd)N with Eu*. REE modeling indicates that these covariations cannot be accounted for by high-pressure crystal fractionation of hydrous primitive or derivative andesites. They are consistent with formation of the garnet granulites as plagioclase–garnet assemblages with variable trapped melt fractions via either high-pressure crystallization of primitive island arc basalts or dehydration-melting of hornblende gabbronorite, provided that the amount of segregated or restitic garnet was low (<5 wt %). Field, petrographic, geochemical and experimental evidence is more consistent with formation of the Jijal garnet granulite by dehydration-melting of Jijal hornblende gabbronorite. Similarly, the Jijal garnet-bearing hornblendite lenses were probably generated by coeval dehydration-melting of hornblendites. Melting models and geochronological data point to intrusive leucogranites in the overlying metaplutonic complex as the melts generated by dehydration-melting of the plutonic protoliths of the Jijal garnet-bearing restites. Consistent with the metamorphic evolution of the Kohistan lower arc crust, dehydration-melting occurred at the mature stage of this island arc when shallower hornblende-bearing plutonic rocks were buried to depths exceeding 25–30 km and heated to temperatures above c. 900°C. Available experimental data on dehydration-melting of amphibolitic sources imply that thickening of oceanic arcs to depths >30 km (equivalent to c. 1·0 GPa), together with the hot geotherms now postulated for lower island arc crust, should cause dehydration-melting of amphibole-bearing plutonic rocks generating dense garnet granulitic roots in island arcs. Dehydration-melting of hornblende-bearing plutonic rocks may, hence, be a common intracrustal chemical and physical differentiation process in island arcs and a natural consequence of their maturation, leading to the addition of granitic partial melts to the middle–upper arc crust and formation of dense, unstable garnet granulite roots in the lower arc crust. Addition of LREE-enriched granitic melts produced by this process to the middle–upper island arc crust may drive its basaltic composition toward that of andesite, affording a plausible solution to the ‘arc paradox’ of formation of andesitic continental-like crust in island arc settings.
机译:我们报告了吉贾尔和萨兰加尔复合体的地球化学研究结果,这些复合体构成了中生代科伊斯坦斯坦古岛弧(巴基斯坦北部)的下地壳。 Jijal复合体由基底橄榄岩组成,顶部是辉长岩剖面,由镁铁榴石石榴石颗粒和少量的石榴石角闪石和花岗岩构成,从上划分为角闪闪辉长石。 Sarangar复合体由metagabbro组成。 Sarangar长辉岩和Jijal hornblende长辉石具有类似于岛弧玄武岩的熔融态,轻稀土元素(LREE)富集的REE模式。他们与吉贾尔石榴石花岗石一起定义了La N ,Yb N 和(La / Sm) N 与Eu 的负协变* [Eu * = 2×Eu N /(Sm N + Gd N ),其中N表示标准化的球粒陨石],以及(Yb / Gd) N 与Eu * 的正协变。 REE模型表明,这些协变量不能通过含水原生或衍生物安山岩的高压晶体分馏来解释。它们与石榴石粒石的形成一致,因为原始岛弧玄武岩的高压结晶或角闪闪辉长辉石的脱水熔融会形成斜长石-石榴石组合物并具有可变的捕获熔体分数,条件是偏析或复晶石榴石的数量低( <5 wt%)。野外,岩相,地球化学和实验证据与吉加角闪石辉长辉石的脱水熔融形成吉加石榴石花岗石更为一致。同样,吉贾尔(Jijal)石榴石的角闪石晶状体可能是由于角闪石的近代脱水熔融而产生的。融化模型和地质年代学数据表明,由于含贾贾尔石榴石的重晶石原岩的原生质岩的脱水融化而产生的熔融物,覆盖了上成矿质杂岩中的侵入性花岗花岗岩。与Kohistan下弧地壳的变质演化相一致,在该岛弧的成熟阶段发生脱水融化,这是因为浅角含角闪石的深部岩石被埋藏到超过25–30 km的深度并加热到高于c的温度。 900℃。可用的关于两性源岩脱水融化的实验数据表明,海洋弧的增厚至深度> 30 km(相当于c。1·0 GPa),以及现在假定用于下岛弧壳的高温地热,都应引起脱水融化。弧形的含闪石的深成岩形成密集的石榴石花粉根。因此,含角闪石的深部岩石的脱水熔融可能是岛弧中常见的壳内化学和物理分化过程,也是其成熟的自然结果,从而导致在中上弧壳和地层中增加了花岗岩的部分熔体。下弧壳中有密集,不稳定的石榴石花岗石根。通过该过程产生的富含LREE的花岗岩熔体添加到中上岛弧壳中,可能使其玄武岩成分向安山岩中倾斜,从而为在岛弧中形成安第斯陆壳状地壳的“弧形悖论”提供了合理的解决方案。设置。

著录项

  • 来源
    《Journal of Petrology》 |2006年第10期|1873-1914|共42页
  • 作者单位

    DEPARTAMENTO DE MINERALOGíA Y PETROLOGíA UNIVERSIDAD DE GRANADA FACULTAD DE CIENCIAS 18002 GRANADA SPAIN;

    ISTEEM LABORATOIRE DE TECTONOPHYSIQUE CNRS UNIVERSITé DE MONTPELLIER II 34095 MONTPELLIER FRANCE;

    GEOLOGISCHES INSTITUT ETH-ZENTRUM SONNEGGSTRASSE 5 8092 ZüRICH SWITZERLAND;

    UNIVERSITY OF BERN INSTITUTE OF GEOLOGICAL SCIENCES BERN SWITZERLAND;

    PAKISTAN MUSEUM OF NATURAL HISTORY GARDEN AVENUE SHAKARPARIAN 44000 ISLAMABAD PAKISTAN;

    INSTITUTE OF GEOLOGY UNIVERSITY OF THE PUNJAB QUAID-I-AZAM CAMPUS 54590 LAHORE PAKISTAN;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号