首页> 外文期刊>Journal of Petrology >The Mineralogical Diversity of Alkaline Igneous Rocks: Critical Factors for the Transition from Miaskitic to Agpaitic Phase Assemblages
【24h】

The Mineralogical Diversity of Alkaline Igneous Rocks: Critical Factors for the Transition from Miaskitic to Agpaitic Phase Assemblages

机译:碱性火成岩的矿物学多样性:从成岩相过渡到成岩相组合的关键因素

获取原文
获取原文并翻译 | 示例
           

摘要

Geochemically, the large family of alkaline plutonic rocks (both Qtz-undersaturated and -oversaturated compositions) can be subdivided into metaluminous [(Na2O + K2O) Al2O3] types. In this paper, we discuss two important aspects of the mineralogical evolution of such rocks. With respect to their Fe–Mg phases, a major mineralogical transition observed is the precipitation of arfvedsonite or aegirine instead of fayalite or magnetite (± ilmenite). The relative stability of these phases is controlled by oxygen fugacity and Na activity in the crystallizing melts. If Na activity in the melt is high enough, arfvedsonite + aegirine form a common assemblage in peralkaline rocks under both reduced and oxidized conditions. Major mineralogical differences within this rock group exist with respect to their high field strength element (HFSE)-rich minerals: most syenitic rocks, known as miaskites, contain zircon, titanite or ilmenite as HFSE-rich minerals, whereas in agpaites complex Na–K–Ca–(Ti, Zr) silicates incorporate the HFSE. Similarly, only a small group of peralkaline granites are found to lack zircon, titanite or ilmenite but instead contain Na–K–Ca–(Ti, Zr) silicates. Here, we present a detailed phase petrological analysis of the chemical parameters (µNa2O, µCaO, µK2O) that influence the transition from miaskitic to agpaitic rocks. Based on the occurrence of Ti and Zr minerals, several transitional mineral assemblages are identified and two major evolution trends for agpaites are distinguished: a high-Ca trend, which is exemplified by the alkaline rocks of the Kola Province, Russia, and a Ca-depletion trend, which is displayed by the alkaline rocks of the Gardar Province, South Greenland. Both trends show significant Na-enrichment during magmatic evolution. High-Ca agpaites evolve from nephelinitic parental melts that did not crystallize large amounts of plagioclase. In contrast, agpaites showing Ca-depletion originate by extensive fractionation of plagioclase from basaltic parental melts. In some peralkaline granites evolutionary trends are observed that culminate in agpaite-like HFSE-mineral associations in the most evolved rocks.
机译:从地球化学角度看,可以将大类的碱性深成岩(包括Qtz欠饱和和过饱和成分)细分为金属性[(Na 2 O + K 2 O)Al < sub> 2 O 3 ]类型。在本文中,我们讨论了此类岩石的矿物学演化的两个重要方面。关于它们的Fe-Mg相,观察到的主要矿物学上的转变是非镁铝铁矿或磁铁矿(±钛铁矿)而不是方铁石或磁铁矿的沉淀。这些相的相对稳定性由结晶熔体中的氧逸度和Na活性控制。如果熔体中的Na活性足够高,则无论是在还原条件下还是在氧化条件下,钠钾长石+ eg胺都在高碱性岩石中形成常见的聚集体。就富含高场强元素(HFSE)的矿物而言,该岩石群内存在主要的矿物学差异:大多数的蛇纹岩(称为miaskites)含有锆石,钛铁矿或钛铁矿作为HFSE丰富的矿物,而在磷灰石中复杂的Na–K –Ca–(Ti,Zr)硅酸盐结合了HFSE。同样,仅发现一小部分过碱性的花岗岩缺乏锆石,钛矿或钛铁矿,而是含有Na-K-Ca-(Ti,Zr)硅酸盐。在此,我们对影响从滑石质岩到混成岩转变的化学参数(μNa 2 O,μCaO,μK 2 )进行了详细的相岩石学分析。根据Ti和Zr矿物的出现,确定了几种过渡矿物组合,并区分了磷灰石的两个主要演变趋势:高Ca趋势,以俄罗斯可乐省的碱性岩石为例,而Ca-枯竭趋势,由南格陵兰加尔达省的碱性岩石显示。两种趋势在岩浆演化过程中都显示出明显的钠富集。高钙磷灰石是从未结晶大量斜长石的亲肾母体熔体演化而来的。相反,显示钙耗尽的磷灰石源自玄武岩母体熔体中斜长石酶的广泛分馏。在一些高碱性花岗岩中,观察到了演化趋势,这些趋势最终以演化最快的岩石中的类似辉石的HFSE-矿物组合形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号