...
首页> 外文期刊>Journal of Petrology >The Inner Workings of Crustal Distillation Columns; the Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs
【24h】

The Inner Workings of Crustal Distillation Columns; the Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs

机译:地壳蒸馏塔的内部工作;硅岩浆储层相分离的物理机理和速率控制

获取原文
获取原文并翻译 | 示例

摘要

Olivier Bachmann is Professor of volcanology and magmatic petrology at the ETH Zurich. He obtained his PhD at the University of Geneva, and held positions of post-doctoral fellow and professor at the University of Washington (USA) before moving to Zurich in 2012. Olivier has always enjoyed collaborative research focusing on the dynamics of magmatic systems, trying to merge data from different realms, including fieldwork, petrology, geochemistry, geochronology, geophysics, and numerical models. In particular, what happens within magma reservoirs leading to super-eruptions has always been a major drive in his research.Christian Huber is an associate professor of geophysics at Brown University. He studied Earth sciences and then physics at the University of Geneva, before pursuing a PhD at UC Berkeley, USA. Before moving to Brown University, Chris held a faculty position at the Georgia Institute of Technology. Chris works on dynamical processes associated with multiphase systems, with an emphasis on magmatic systems. Igneous processes have a fundamental impact on how our planet is shaped: they contribute to the growth of continents, control volcanic activity, form ore deposits and supply most volatile elements to our atmosphere. In the course of this igneous differentiation, phase separation plays a key role, as in all distillation processes. How, and how fast, this phase separation occurs are therefore critical questions to address to better understand the inner workings of the Earth (and other planets). In this Perspectives article, we will review some of the most important aspects of the processes that govern igneous distillation, considering the effect of three distinct phases (crystals-melt-fluid, in decreasing order of viscosity and density) on mechanical separation processes in a gravity field. We will also discuss the potential impacts of external factors (e.g. tectonic forces, magma recharge, seismic waves) on phase separation. Regardless of the source of energy driving phase separation in crustal differentiation columns, crystal settling at low crystallinity and compaction at intermediate to high crystallinity play a major role in separating silicate minerals from melts and fluids. We suggest that compaction without any associated deformation of solids (herein referred to as crystal repacking') is an important process that can extract up to a few tens of per cent (volume) of melt from its crystalline matrix, particularly in shallow silicic reservoirs. Rates of melt extraction by compaction are probably relatively slow, requiring centuries to millennia to generate large crystal-poor pockets (>10s to 100s of km(3) of silicic melt). Alternative processes, such as gas-driven filter pressing or melt segregation by shear or deformation, can enhance or inhibit phase separation, depending on specific conditions, but they are unlikely to be particularly efficient in silicic systems.
机译:Olivier Bachmann是苏黎世联邦理工学院火山学和岩浆岩石学教授。在2012年移居苏黎世之前,他在日内瓦大学获得博士学位,并在华盛顿大学(美国)担任博士后研究员和教授。奥利维尔一直享受着专注于岩浆系统动力学的合作研究,合并来自不同领域的数据,包括田野调查,岩石学,地球化学,地球年代学,地球物理学和数值模型。特别是在导致超喷发的岩浆储层内部发生的变化一直是他研究的主要动力。克里斯蒂安·胡伯(Christian Huber)是布朗大学地球物理学副教授。在美国加州大学伯克利分校攻读博士学位之前,他在日内瓦大学学习了地球科学,然后又学习了物理学。在转到布朗大学之前,克里斯曾在佐治亚理工学院任教。克里斯致力于与多相系统有关的动力学过程,重点是岩浆系统。火成过程对我们星球的形成有根本影响:它们有助于大陆的增长,控制火山活动,形成矿床并向我们的大气供应最易挥发的元素。与所有蒸馏过程一样,在这种火成的过程中,相分离起着关键作用。因此,这种相分离发生的方式和速度是至关重要的问题,需要解决以更好地理解地球(和其他行星)的内部工作原理。在这篇“观点”文章中,我们将探讨控制火成蒸馏过程的一些最重要方面,其中考虑了三个不同的相(晶体,熔体,粘度和密度从高到低的顺序)对机械分离过程的影响。重力场。我们还将讨论外部因素(例如构造力,岩浆充填,地震波)对相分离的潜在影响。无论在地壳分馏塔中驱动相分离的能量来源如何,低结晶度的晶体沉降和中高结晶度的压实在将硅酸盐矿物从熔体和流体中分离中都发挥着重要作用。我们建议压实而没有任何相关的固体变形(在本文中称为“晶体重装”)是一个重要过程,可以从其晶体基质中提取多达百分之几十(体积)的熔体,特别是在浅硅质储层中。通过压实提取熔体的速度可能相对较慢,需要几个世纪到几千年的时间才能产生大的晶体贫瘠的囊袋(> 10s至100s km(3)的硅质熔体)。替代方法,例如气体驱动的压滤机或通过剪切或变形引起的熔体分离,可以根据特定条件增强或抑制相分离,但在硅质系统中不太可能特别有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号