首页> 外文期刊>Journal of neural engineering >Adaptive latent state modeling of brain network dynamics with real-time learning rate optimization
【24h】

Adaptive latent state modeling of brain network dynamics with real-time learning rate optimization

机译:具有实时学习速率优化的脑网络动态自适应潜在状态建模

获取原文
获取原文并翻译 | 示例
       

摘要

Objective. Dynamic latent state models are widely used to characterize the dynamics of brain network activity for various neural signal types. To date, dynamic latent state models have largely been developed for stationary brain network dynamics. However, brain network dynamics can be non-stationary for example due to learning, plasticity or recording instability. To enable modeling these non-stationarities, two problems need to be resolved. First, novel methods should be developed that can adaptively update the parameters of latent state models, which is difficult due to the state being latent. Second, new methods are needed to optimize the adaptation learning rate, which specifies how fast new neural observations update the model parameters and can significantly influence adaptation accuracy. Approach. We develop a Rate Optimized-adaptive Linear State-Space Modeling (RO-adaptive LSSM) algorithm that solves these two problems. First, to enable adaptation, we derive a computation- and memory-efficient adaptive LSSM fitting algorithm that updates the LSSM parameters recursively and in real time in the presence of the latent state. Second, we develop a real-time learning rate optimization algorithm. We use comprehensive simulations of a broad range of non-stationary brain network dynamics to validate both algorithms, which together constitute the RO-adaptive LSSM. Main results. We show that the adaptive LSSM fitting algorithm can accurately track the broad simulated non-stationary brain network dynamics. We also find that the learning rate significantly affects the LSSM fitting accuracy. Finally, we show that the real-time learning rate optimization algorithm can run in parallel with the adaptive LSSM fitting algorithm. Doing so, the combined RO-adaptive LSSM algorithm rapidly converges to the optimal learning rate and accurately tracks non-stationarities. Significance. These algorithms can be used to study time-varying neural dynamics underlying various brain functions and enhance future neurotechnologies such as brain-machine interfaces and closed-loop brain stimulation systems.
机译:客观的。动态潜行状态模型广泛用于表征各种神经信号类型的脑网络活动的动态。迄今为止,在静止脑网络动态的情况下大大开发了动态潜国模型。然而,由于学习,可塑性或记录不稳定,脑网络动态可以是非静止的。要启用建模这些非实用性,需要解决两个问题。首先,应该开发新的方法,其可以自适应地更新潜在状态模型的参数,这是由于状态潜伏而困难的。其次,需要新的方法来优化适应学习率,这指定了新的神经观察快速更新模型参数,并且可以显着影响适应精度。方法。我们开发了一种速率优化 - 自适应线性状态空间建模(RO-Adaptive LSSM)算法,可以解决这两个问题。首先,为了启用适应,我们得出了一种计算和内存高效的自适应LSSM拟合算法,其在存在潜在的存在下递归和实时更新LSSM参数。其次,我们开发了一个实时学习率优化算法。我们使用综合模拟广泛的非平稳脑网络动力学来验证两个算法,它们共同构成了RO-Adaptive LSSM。主要结果。我们表明,自适应LSSM拟合算法可以准确地跟踪广泛的模拟非静止脑网络动态。我们还发现,学习率显着影响LSSM合适的精度。最后,我们表明实时学习率优化算法可以与自适应LSSM拟合算法并联运行。这样做,组合的RO-Adaptive LSSM算法迅速收敛到最佳学习率,准确地跟踪非实用性。意义。这些算法可用于研究各种大脑功能的各种神经动力学,并增强未来的神经技术,例如脑机接口和闭环脑刺激系统。

著录项

  • 来源
    《Journal of neural engineering》 |2021年第3期|036013.1-036013.34|共34页
  • 作者单位

    Ming Hsieh Department of Electrical and Computer Engineering Viterbi School of Engineering University of Southern California Los Angeles CA United States of America;

    Ming Hsieh Department of Electrical and Computer Engineering Viterbi School of Engineering University of Southern California Los Angeles CA United States of America;

    Ming Hsieh Department of Electrical and Computer Engineering Viterbi School of Engineering University of Southern California Los Angeles CA United States of America Neuroscience Graduate Program University of Southern California Los Angeles CA United States of America;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    brain network dynamics; dynamic latent state models; adaptation; state-space models; learning rate;

    机译:脑网络动力学;动态潜国模型;适应;国家空间模型;学习率;
  • 入库时间 2022-08-19 01:18:01
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号